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These notes originated as the course material for my part of a Cor-
nell course on using storage rings as synchrotron light sources, given with
Sol Gruner, spring term 2000. Sol emphasized the “downstream” view,
especially detection apparatus. My part gave an “upstream” view of the
storage ring as radiation source. The notes were much expanded for the
January 2001 USPAS School at Rice University in Houston and most of
the material on undulator radiation has been developed subsequent to that
school. There is substantial overlap of these notes with the famous storage
ring report by Sands. The main difference is the emphasis on using the
ring as source of photons rather than as a colliding beam facility. For the
Yale, 2002, USPAS school, only chapters in which electromagnetic theory
is prominent will be covered.

By now there is a considerable body of material describing this topic,
and detailed “handbook” formulas are available for the important quan-
tities. I refer to this material occasionally, but my intention is more to
emphasize the intuitive content of the subject, even when this yields for-
mulas having only a semi-quantitative validity. My rationale is that it is
harder to grasp the essentials of the subject than to find and understand
exact formulations once one has the general idea. To promote this ap-
proach I pretend that all storage ring development has been motivated by
their use as sources of synchrotron light, even though early generation ra-
diation sources were entirely parasitic, and early ring designs were driven
by particle physics considerations.

In the beginning I promote the view that the evolution of internal/electron
and external/photon beams are “essentially” equivalent, and are subject to
the same formulas. To exploit this “economy” it is necessary to apply, to
beams of photons, terms that are familiar mainly to accelerator physicists.
Unfortunately this (not very deep) synthesis is sufficiently novel that I am
unaware of any helpful references. A deficiency of the notes at present is
that, though the main ingredients of FEL theory are described, they are
not stitched together coherently. Also, though supposedly sophisticated
statistical methods (such as Fokker-Planck) are explained, no examples are
included (at this time.)






Table of Contents

1. Photon Beams/Electron Beams . . . . . . . .. ... ...

1.1. Introduction . . . . . . . . .. L

1.2. One-Dimensional Transverse Propagation Equations . . . . . . . . . . ..

1.3. Transfer Matrices For Simple Elements . . . . . . . . . .. .. ... ...

1.4.
1.5.
1.6.
1.7.
1.8.
1.9.

1.3.1. Drift

Space . . ... e e e e e e e

1.3.2. Thin Lens . . . . . . . . . . . .
1.3.3. Thick Lens . . . . . . . .« o o e e e e

1.3.4. Erect

Quadrupole Lens . . . . . . . . . . ... ...

Elliptical (in Phase Space) Beams . . . . . . . ... ... ... .....

The Beam Envelope . . . . . . . . . . . . ... ... ...

Gaussian Beams: Their Variances and Covariances . . . . . . . . . . ..

Pseudoharmonic Trajectory Description . . . . . . . . .. .. ... ...

Transfer Matrix Parameterization . . . . . . . . . . . . . . . . . .. ..

Reconciliation of Beam and Lattice Parameters . . . . . . . . . .. ...
1.9.1. Beam Evolution Through a Drift Section . . . . . . . . . . ... ..
1.9.2. Beam Evolution Through a Thin Lens . . . . . . . . . . ... ...

1.10. Photon Beam Features “Inherited From” the Electron Beam . . . . . . .

1.11. Light: Waves or Particles? . . . . . . . . . . .. ... ... ...

1.12. Measures of Intensity, Flux, Brilliance and Brightness . . . . . . . . ..

2. Synchrotron Radiation: Wave Properties . . . . . . . . .. .. .. ... ...
2.1. Electric Field Calculation . . . . . . . . .. .. ... ...
2.2. Total Power Radiated and its Angular Distribution . . . . . . . .. . ..

2.3. Spectral Power Density of the Radiation . . . . . . . . .. .. ... ...

2.4. Radiation From Multiple Charges . . . . . . . . . .. .. .. ... ...

3. The Simplest Possible Storage Ring . . . . . . . . . ... ... ... ...

3.1.
3.2.
3.3.
3.4.
3.9.
3.6.

Motivation

The Uniform Field Ring . . . . . . . ... ... ... ... .. ...

Horizontal Deviation . . . . . . . . . . . .« e

Vertical Deviation . . . . . . . . . . . . L

Simultaneous Horizontal and Vertical Stability . . . . . . . . . . . .. ..

Dispersion

© o o ot W W

10
10

12
14
15
17
18

19
19
20

21
23
24

30
31
37
40
44

46
46
47
48
50
ol
52



il

3.7. Momentum Compaction . . . . . . . . . . . . e 53
3.8. Chromaticity . . . . . . . . . . . . 54
4. The Influence Of Synchrotron Radiation On a Storage Ring . . . . . . . . .. 5%
4.1. Introduction . . . . . . ..o L oL 5]
4.2. Statistical Properties of Synchrotron Radiation . . . . . . . . . . . . .. 56
4.3. The Damping Rate Sum Rule: Robinson’s Theorem . . . . . . . . . .. 64
4.3.1. Vertical Damping . . . . . . . . . ..o 68
4.3.2. Longitudinal Damping . . . . . . . . . . .. ... 69
4.3.3. Horizontal Damping and Partition Numbers . . . . . . . . . . . .. 7
4.4. Equilibrium Between Damping and Fluctuation. . . . . . . . .. .. .. 78
4.5. Horizontal Equilibrium and Beam Width . . . . . . .. ... ... ... 79
4.6. Minimum Vertical Beam Size . . . . . . . . . . .. .. ... 86
4.7. Longitudinal Equilibrium and Energy Spread . . . . . . . .. .. .. .. 87
4.8. Bunch Length Determination . . . . . . . . . . . . .. ... ... ... 90
4.9. Tune Dependence of Emittance . . . . . . . . . . ... ... ... ... 97
5. Statistical Methods . . . . . . . . ..o 100
5.1. Brownian Motion, Stochastic and Fokker-Planck Equations, etc. . . . . . 100
5.2. Statistical Properties of Systems of Random Points . . . . . . . . . . .. 106
5.3. Nonidentical, Bipolar, Short Pulses, Random in Time . . . . . . . . . .. 110
5.4. Fokker-Planck Equation Derived From Stochastic Differential
Equation . . . . . . . . .. e 111
6. Undulator Radiation . . . . . . . . . . ... ... o 114
6.1. Introduction . . . . . . . .o Lo Lo 114
6.2. Semi-Quantitative Treatment of K << 1 Operation . . . . . . . . . . .. 117
6.2.1. Synchrotron Radiation From a “Short” Deflector . . . . . . . . .. 117
6.2.2. Spectral Analysis of the Single Pole Radiation . . . . . . . . . . .. 123
6.2.3. Coherence From Multiple Deflections . . . . . . . . . .. ... ... 129
6.3. Energy Interval Definitions . . . . . . . . . . . .. ... 135
6.4. Undulator Radiation For Arbitrary K Values . . . . . .. ... .. ... 142
6.5. Numerical/Graphical Representation of Undulator Radiation . . . . . . . 152
6.6. Approximation of the Integrals By Special Functions . . . . . . .. . .. 156
6.7. Practical Evaluation of the Series . . . . . . . . . .. ... ... ... 158

6.8.

Post-Monochrometer Profile . . . . . . . . . . . . . . . ... ... ... 161



il

6.9. Accelerator Physics Considerations . . . . . . . . . . .. ... ... ... 163
6.9.1. Dependence of brilliance on electron beam emittance . . . . . . .. 163
6.9.2. Dependence of Beam Brillianceon K . . . . . . . . . .. ... ... 165
6.9.3. Is the Forward Peak Subject to Line Narrowing? . . . . . . . . .. 170
6.10. Treatment of Magnetic Wiggler Radiation as Thomson Scat-
tering . . ... oL e e 172
7. Undulator Magnet Design . . . . . . . . . . . . ..o 175
7.1. Introduction . . . . . ... Lo 175
7.2. Radiation Formulas . . . . . . . .. .. ... oo 176
7.3. A Hybrid, Electo-Permanent, Asymmetric Undulator . . . . . . . . . .. 179
7.4. Electromagnet Design . . . . . . . . . ..o 180
7.5. Permanent Magnet Design—Small Gap Limit . . . . . . . .. . ... .. 185
7.6. Combined Electro- and Permanent-Magnet Fields . . . . . . . . ... .. 188
7.7. Estimated High Energy X-Ray Flux . . . . . ... ... ... ... ... 188
8. The Microwave Undulator . . . . . . . . . . .. ... ... ... ..... 191
8.1. Introduction . . . . . . . . oL oL 192
8.2. Radiation Intensity From Microwave Undulator . . . . . . . . . . . . .. 194
8.3. Accelerator Physics Considerations . . . . . . . . . . . .. .. ... ... 198
A. Trajectory of electron in electromagnetic wave . . . . . . . . . . . . . .. ... 204
B. Relativistically Invariant Treatment of the Microwave Undulator . . . . . . . . 208
9. High Brilliance Circular Rings . . . . . . . . . . .. .. ... ... ... ... 213
9.1. Choice of Beam Energy . . . . . . . . . .. .. ... 213
9.1. The Trbojevic-Courant Minimum Emittance Cell . . . . . . . . . . . .. 216
9.2. Design Formulas For Trbojevic-Courant Lattice in CESR Tun-
nel . ..o e 218
9.3. Thick Lens and Nonlinear Optics . . . . . . . . . . . . .. .. ... ... 225
9.4. Dispersion Suppression . . . . . . .. v e e v e e e e e e e e e e 228
9.5. Touschek-Dominated Operation . . . . . . . . .. ... ... ... ... 229
9.6. Conclusions . . . . . . . . . L 231
10. Some Ingredients of FEL Theory . . . . . . . . . . . . .. ... ... ... 233
10.1. The Free Electron Laser (FEL) . . . . . . .. .. ... ... ... ... 233

10.2. Interpretation of Undulator Radiation as Compton Scattering . . . . . . 234



iv

11.

10.3. Absorption, Spontaneous Emission, and Stimulated Emission

of Photons . . . . . . . . Lo 236

10.4. Applicability Condition for Semi-Classical Treatment of Undu-
lator Radiation . . . . . . . . ..o 238
10.5. Optical Resonator . . . . . . . . . . . ... ... ... ... 240
10.5.1. Wave particle duality . . . . . . . . . . ... 240
10.5.2. Gaussian beam in a focusing medium . . . . . . . ... . ... 241
10.5.3. Gaussian beam in free space . . . . . . . . .. ..o 242
10.5.4. The ABCD Law . . . . . . . . . . . . . . . i .. 243
10.5.5. Optics using mirrors . . . . . . . . . . . . ..o 245
10.6. Density of States and Stored Energy in Laser Resonator . . . . . . . .. 247
Accelerator Correction . . . . . . . . .. oo 249
11.1. Introduction . . . . . . . . . ..o 249
11.2. The Closed-Orbit Influence Function. . . . . . . . .. . . .. ... ... 251
11.3. Improvement of the Closed Orbit Using Steering Correctors. . . . . . . . 252
11.4. Possible refinements . . . . . . . . . ..o 254
11.5. Least squares compensation . . . . . . . . . . . ... o000 L 256
11.6. Singular Value Decomposition . . . . . . . . . . . .. ... ... 259

11.7. References . . . . . . . . . s 261



Chapter 1.
Photon Beams/Electron Beams

1.1. Introduction

This course will deal with beams of particles, photons or electrons, where electron will be
taken to include also positron. The kinematics of photons and electrons will be the same
(unless, of course, the charge matters) since, in the highly relativistic regime, the electron
rest mass can be neglected. For this reason the most fundamental features (Liouville’s
theorem and its generalizations, linear/nonlinear distinction, intensities, emittances, adi-
abatic invariance, and so on) apply equally to both sorts of beam. Unfortunately, this
equivalence tends to be masked by the different terminologies that have evolved during
the independent historical development of accelerator physics and optical physics. The
merging of these two fields has come only comparatively recently with the development of
storage rings as sources of photon beams. Though the notation in this chapter is drawn
mainly from the accelerator side, all formulas apply equally to photons and electrons. f
By definition, a beam is a number (usually billions and billions) of particles all traveling
more or less parallel. For purposes of description it is useful to start by picking some “most-
central” particle as a “reference particle” and describing its “ideal” or “reference” ray or
trajectory through the system. Any particular point on the reference trajectory can be
located by global Cartesian coordinates (X,Y, Z) relative to some fixed origin. But, to
take advantage of the essentially one dimensional placement of elements it is profitable to
locate elements by arc length (called s) from the origin along the central ray. Once these
coordinates are known for the central particle, all the other particles in the beam can be
located by relative coordinates. For these relative coordinates it is convenient to use a
reference frame aligned with the central ray. “Tangential” or “longitudinal” displacements

are specified by incremental arc length z = As and (z, y) serve as “transverse” coordinates,

T Since it is hard for an accelerator physicist to avoid using the word “lattice” to describe a beamline of
lenses, an optical physicist will have to tolerate this usage. Another confusing practice drawn from accelerator
tradition is to use the same symbol for seemingly unrelated quantities, knowing they will later be shown to
be equal (in some sense, or under some circumstances). This comment applies especially to the symbols
and e.
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with z usually being horizontal and y vertical. The longitudinal coordinates s and z
combine trivially—by simple addition. For relativistic particles, s is proportional to ¢

(s =vt, v = ¢) and s can take over from ¢ the role of “independent variable” T

There is nothing “small” about the reference trajectory—in a storage ring it bends
through 27, in a photon beam it may reflect through comparably large angles. On the
other hand there is much that is “small” about the relative motion and, of course, that is
why the division is made. Loosely speaking then, the coordinates (X,Y, Z, s) are “large”
and the coordinates (x,y, z) are “small”. The fundamental beam properties mentioned in

the first paragraph apply primarily to these small displacements.

Much the same comments apply to velocity and momentum. The momentum com-
ponents of the central ray are (0,0, Py) and, in the absence of accelerating elements, Py
is constant. The momentum components of a beam particle are customarily expressed as

ratios
(P, P, P,—P,
(p1'7py76) - (FO7FO7TO 9

where § = AP/ P, is therefore the fractional momentum deviation from the central momen-

(1.1.1)

tum. These definitions are traditional for particle description; for photon description the
momentum is more traditionally expressed as “wave vector” k = p/h and the definitions

have to be modified accordingly.

The name “Gauss” is often attached to beam transport transport systems and, with
quite different meaning, to beams. In a Gaussian beam the distributions of the above-
mentioned deviations, (z,¥, 2, Pz, Py, 0), are governed by Gaussian probability distributions.
Typically it is the spreads of these variables that are more important than the detailed
distribution and the Gaussian serves primarily as a probability distribution that is big
in the middle and drops off rapidly for large deviations. The standard deviation of the
Gaussian is a good objective measure of beam spread that can serve as a semi-quantitative
size measure in all cases and as an accurate quantitative measure in those cases where the

beam distribution is truly Gaussian. We will return to Gaussian beams later.

e practice of using longitudinal coordinate as independent variable perhaps dates from the early days
t Th tice of using longitudinal dinat ind dent variabl haps dates fi th ly d
of optics, before photons were even conceived of, when there was no reason to contemplate the rate of advance
of anything along a ray, so the purely geometric character of the ray was emphasized.
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Far more fundamental is “Gaussian” (also known as “paraxial”) optics, which describes
transport systems in which the trajectory deviations, both displacement and slope, away
from the reference trajectory are small enough to be treated by “linearized” equations of
motion. That is, the differential equations governing the evolution of (z(s),y(s),...) are
linear in (z,y,...). Since these linearized equations are usefully expressed using matrices,
such optical systems are said to be satisfy “matrix optics”. The fundamental characteristics
listed in the first paragraph are most easily described in terms of these matrices, and the
“linear” distinction listed there is synonymous with “paraxial”.

The propagation of a beam of particles through a sequence of beamline elements can
be viewed from three different perspectives. These particle, beam, and beamline views will
be taken up, in order, in the following sections and, after that, be reconciled. A rich source
of confusion is that the same symbols (especially € and /3) will be used in all views, so the
reader will have to trust that seemingly unrelated usages will eventually be (more or less)
reconciled; this is to say that the logic of assigning the same symbol to different quantities

will eventually be made clear.

1.2. One-Dimensional Transverse Propagation Equations

The most essential feature distinguishing material particles like electrons from photons is
that electrons can be bent in magnetic fields. For the subject matter under discussion this
distinction turns out to be “inessential”, for much the same reason that plane mirrors,
in spite of grossly redirecting light beams, have no essential optical effect. For unity
of description we therefore discuss now only a beam traveling along a straight channel
centered on the s-axis, planning later to incorporate the (small) effects due to magnetic
bending. To prevent the eventual departure of even slightly divergent rays, it is necessary
to have focusing elements such as quadrupoles for charged particles, fiber optics or optical
lenses for visible photons, curved mirrors for x-rays, and so on. The differential equation
describing such focusing ist
d%y

-3 =K (s)y, (1.2.1)

t The symbol y, rather than, say, x, has been chosen as dependent variable, because storage rings are
traditionally horizontal, so the vertical orbit equations will remain valid when, later on, we incorporate the
bending magnets that are necessarily present.
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where K (s) is the “vertical focusing strength”. Its dependence on s permits the description
of systems in which the focusing strength varies along the orbit. In particular, K(s) =0
describes “drift spaces” in which case Eq. (1.2.1) is trivially solved, and yields the obvious
result that particles in free space travel in straight lines.

It is conventional to designate dy/ds by 3. Then, from any two solutions y; and ys
of Eq. (1.2.1) one can form the “Wronskian” yiy5 — yjy2 which has the virtue of being

constant, since

d
7 (y1y5 — yiy2) = 0. (1.2.2)
d
e |

ds

I:)O
U

Figure 1.2.1: Relations among transverse angle, momentum, and slope.

There are three candidates for describing angular features of the beam: angle 6, slope

y', or momentium p,. All of these are exhibited in Fig. 1.2.1, and one sees that

Dy
cos B,

= tanf, = (1.2.3)

This multiple ambiguity in what constitutes the coordinate conjugate to y is something
of a nuisance at large amplitudes but, fortunately, all three definitions approach equality
in the small-angle limit that characterizes Gaussian optics. One knows from Hamiltonian
mechanics that py is the safest choice but, while limiting ourselves to Gaussian optics, we
will refer loosely to 3’ as “vertical momentum” so that we can refer to the (y,y’)-plane as
“vertical phase space”.

Starting from any point sy along the beamline, one defines two special orbits, a “cosine-

like” orbit C'(s, sg) with unit initial amplitude and zero slope, and a “sine-like” orbit S(s, sg)
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with zero initial amplitude and unit slope:Jr

0(50750) = 17 c’ (50750) = 07
(1.2.4)
5(80,80) = 0, Sl (80,80) =1.

Because Eq. (1.2.1) is linear and second order, any solution y(s) and its first derivative

y'(s) can be expressed as that linear superposition of these two solutions that matches

initial conditions: .
y(s) = C(s,50)y(s0) +S(s,80) ¥y (s0),

y' (s) = C"(s,50) y (s0) + 5" (5,50) 5 (50) -

This can be expressed in matrix form, with y = (y,y’ )T being a “vector in phase space”:

(1.2.5)

y (s)

Il
/N
Qﬁ\c@
/—\/_\
» =2

) - (((;’((ZZOO)) 5/((858500))> y (s0) = M (s0, ) y (0) - (1.2.6)

This serves to define M(sg, s), the “vertical transfer matrix from sg to s”. Since any
solution of Eq. (1.2.1) can be expressed in this way, an entire beamline can be characterized
by M(sg, s). This matrix can be “composed” by multiplying (or “concatenating”) the
matrices for the successive beamline elements making up the line.

Being interested in not just one particle, but many particles making up a beam, we
define a “phase space density function” p(s;y,y’) with the property that p(s;y,y)dy dy’ is
the number of particles in the range dy dy’.

Y'(Sp) °10 y'(9)
76 . ° 10
48 09 44
Ao
1 T2 3 vs) ' "o

Figure 1.2.2: Phase space evolution of ten typical particles in advancing
from sg to s along the beam line.

The evolution of a few particles in the beam in proceding from sy to s might resemble

Fig. 1.2.2 where corresponding particles are numbered. Particles 1 through 8 outline an

t Since unity slope is manifestly not a small angle, these definitions only make sense after the equations
g
have been linearized as in Eq. (1.2.1).
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area Ao that evolves into area As. From calculus one knows that the factor relating these

these areas is the Jacobean determinant,

9y Oy
0 oyt

J (s0,s) = det 83;(’) OZ‘? . (1.2.7)
o Ay

From Eq. (1.2.6), suppressing the sg-dependence, it can then be seen that
J(s)=det M (s)| =C(s)S" (s) = S(s)C" (s) = 1. (1.2.8)

which, being the Wronskian for the solutions C(s) and S(s), is known to be constant; that
the value of the constant is 1 comes from evaluating J(sp), using Egs. (1.2.4).

Particle trajectories in phase space cannot cross—this follows from the fact that in-
stantaneous position and slope uniquely determine the subsequent motion. Hence the
boundary will continue to be defined by particles 1 through 8 and a particle like 9 that is
inside the box at sg will remain inside the box at s. Similarly, a particle like 10 will remain
outside.

Putting these these things together, we obtain the result that the particle density p(s)
is, in fact, independent of s. This is Liouville’s theorem, a result that can be discussed
with various degrees of erudition. But it is surprisingly simple in the present context. It

is most succinctly stated by the requirement

det [ M (s) | = 1. (1.2.9)

1.3. Transfer Matrices For Simple Elements

1.3.1. Drift Space

The most important transfer matrix is M;, which describes propagation through a drift

space of length ¢. Since the orbits are given by y(s) = yo + ys,y'(s) = yj, we have

M, — <(1) f) (1.3.1)

In the context of this course, the basis for calling drifts “the most important element” is
that the synchrotron light beamline leading from storage ring to detection apparatus is

one long drift section.
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I T I

O- O+

Figure 1.3.1: Focusing action of a thin lens, thickness As, focusing
strength, K, illustrating the “focal length” f = —(KAs)™! = —¢~L.

1.3.2. Thin Lens

The next most important transfer matrix describes a “thin lens” where the definition of
“thin” is that the thickness As is sufficiently small that coordinate y(s— As/2), just before
the lens, and y(s + As/2), just after, can be taken to be equal. The lens causes a “kink”
Ay =y (s+ As/2) —y'(s — As/2) in the orbit which, as shown in Fig. 1.3.1, will be taken
as occurring at the center of the lens.

The kink can be obtained by integrating Eq. (1.2.1) from O_, just before the lens to

Oy, just after it:
/ Or 4 (dy Oy

Ay = /O_ oy <%> ds =y . K (s)ds =y (KAs). (1.3.2)
Now, a focusing strength that changes discontinuously from 0 to K is not actually realistic.
But the product K As, known as a “field integral”, can be regarded as an abbreviation for
gj K (s)ds where O_ and O are well outside the field region. If K is taken to be equal
to Ko (the value at the center of the element) then As is typically slightly greater than
the physical length of the element because of fringe fields. The “focal length” f of the

lens, defined in Fig. 1.3.1, and the “lens strength” ¢ = —1/f, are then given by
1 Ay
foy

Building in the approximation that y is contant through the lens, the transfer matrix is

M, = (1 0) . (1.3.4)

q 1
As drawn, K and q are positive, f is negative, and the lens is “defocusing”.

then given by
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1.3.3. Thick Lens

The condition for the thin lens formula just given to be valid (As << |f]) is usually well
satisfied for optical systems and accelerator lenses. Even if it is not, if K(s) is constant
(as it usually is, according to design anyway) it is easy to integrate Eq. (1.1.1), yielding
matrix elements of M that are no worse than sines and cosines (or hyperbolic sines and
cosines, depending on the sign of K). For low energy, few element, accelerators this
approach used to be considered “canonical”, but for high energy accelerators the thin
lens approximation is usually adequate. In any case, making use of now readily available
computer power, one can always split elements longitudinally for improved accuracy. Quite
apart from improving accuracy, it is handy to split elements in two, to provide output at
lens centers (where aperture limits are usually determined). Even in the most extreme
cases of intersection region quads, splitting by another factor of, say, three, is more than
adequate, especially since the residual inaccuracy is typically less than the errors due to
the neglect of other factors like fringe fields. For these reasons we will not bother to write

down thick element formulas.

1.3.4. Erect Quadrupole Lens

All formulas so far apply equally to optical and charged particle lenses. Since glass lenses
and spherical mirrors can be focusing in both planes, Eq. (1.3.4) applies to both transverse
planes. But a quadrupole lens that focuses in one plane (unhappily) defocuses in the
other. This is because the vertical bend is due (ideally) to a horizontal magnetic field
B, = (0B;/0y)y, where the proportionality to y is what causes the lens to focus, and

what justifies calling the lens linear. For substitution into Eq. (1.2.1) we therefore use

J X y z
Pgd—p =e|vz Uy Ul. (1.3.5)
t 1B, B, 0

Using the result v, = dz/dt this yields for the vertical deflection

PyAp, = eB;As, (1.3.6)
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which, though approximate, is exact in the small As limit. Linearizing Eq. (1.2.3), this

can be recast as a lens strengtNL

Ayl C(aBm/ay)
= — =K,A h K, =———"""727. 1.3.7
w="L = K05 where o (1.37)

Because of the Maxwell equation 0B,/dy = 0B,/0z, this vertical focusing strength is

necessarily accompanied by horizontal focusing strength of opposite sign:

Az = —qy- (1.3.8)

To express this constraint succinctly it is convenient to write a 4 x 4 transfer matrix:

1 0 0 O

| —¢ 1 0 0
M, = 0o 0 1 0l° (1.3.9)

0 0 g 1

which acts on the vector (z,z'y,3')T. (For a glass lens the off-diagonal terms can have the
same sign, for example both focusing. Clearly this is helpful for designing beamlines.)
The matrix of Eq. (1.3.9) has the desirable property of having no “cross-plane coupling”
so vertical and horizontal motion can be treated independently. But if the quadrupole is
rolled (around the s axis) by 45° it becomes a “skew quad”. It is not hard to show that

the transfer matrix is then

1 0 0 0

s |0 1 ¢q O
M, = 00 1 0 (1.3.10)

g 0 0 1

Now the off-diagonal elements couple horizontal and vertical motion. In the context of
synchrotron light sources, the existence of such elements limit the quality of ribbon electron
beams and hence ribbon photon beams. Such beams may be especially important for
apparatus that relies on Bragg scattering from crystals, and in that case the thickness of
the ribbon is of pre-eminent concern. Since this is a somewhat specialized concern we will
mainly simplify the discussion by assuming the absence of cross-plane coupling.
According to Eq. (1.2.9) every transfer matrix has unit determinant and one can con-
firm this to be the case for the matrices written so far. Any product of these matrices

clearly has the same property, which is consistent with Eq. (1.2.9).;t

t The factors in Eq. (1.3.7) are grouped so that all quantities can be conveniently expressed in M.K.S.
units; in particular Pyc/e is measured in volts.

{ The unit determinant condition is known as the “symplectic condition”. For matrices larger than 2 x 2
this condition is necessary but not sufficient. Still, the most general symplectic matrix can be manufactured
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1.4. Elliptical (in Phase Space) Beams

Because of the gigantic number of particles they contain, it is appropriate to represent
entire beams by distribution functions. Beams that have elliptical shape in phase space
are especially appropriate because, though the sizes, aspect ratios, and orientation vary
with s, the shapes remain elliptical. The reason for this is that Eqs. (1.2.6) are linear.
The sort of distribution envisaged is illustrated in Fig. 1.4.1. For example, the interior
of the ellipse might be uniformly populated (typical of a proton storage ring) or particles
might be uniformly distributed on the elliptical shell, or (typical of electron storage ring)
the beams distributions are “Gaussian distributed”, with the density function constant on

elliptical curves or ellipsoidal surfaces.
Yo

&/ Bo B0 Yo

Figure 1.4.1: An elliptical beam in phase space. In the (y,7)-frame,
skewed by angle 6, the ellipse is erect.

When expressed in coordinates aligned with the ellipse, the general equation of the

beam ellipse at s = sg, as shown in Fig. 1.4.1, is

yz 7 12 __T I/B 0\ _
B—ZJrﬁoyo ZYO< 00 B(})Y—Ey- (1.4.1)

However the beam evolves, its outline has this equation, with appropriate parameters

B(s),0(s), €, The aspect ratio of the ellipse is governed by 3(s) and its area is given by

vertical phase space area = m/eyﬁwey/ﬁ = Tey. (1.4.2)

from the matrices written so far, even in higher dimensions. See Guilleman and Sternberg, Symplectic
Techniques in Physics, p. 23.
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Since this area has been previously shown to be invariant, the parameter ¢, is, in fact,
invariant, which is why it has been given no subscript 0 nor overhead bar. ¢, is known
as the beam “emittance”, though its definition is still ambiguous by an overall constant
factor that depends on the nature of the beam distribution, and the relation of €, to it.
For example ¢, could be a maximum or an r.m.s. value.

The skew coordinates y are related to erect coordinates by

cosby sinfy )
?

—sinfy cosby (1.4.3)

Yo = Royo, where Ry = (

and the beam ellipse, expressed in erect coordinates, is

2 / 12 _ T Y & =T Y0 @o —1—
+ 2« + = = R R = €,. 1.4.4
Youj oYY + Bovy” = ¥o <a0 50) yo =¥y Ro <a0 5o > 0 Yo=¢6 ( )

(The result Ry, 1 — Rg has been used.) The parameters «, 3, v will be called “beam-based

Twiss parameters” for reasons to be explained later. Correlating (1.4.4) with Eq. (1.4.1)

Yo a0\ _pn-1(1/By O
(1 =) n (VF 2)me i

Since all factors on the right hand side have unit determinant, so also must the left hand

yields

side, and hence
1+ a%
Y0 = :
Bo
Because of Eq. (1.4.6), “completing squares” Eq. (1.4.4), the ellipse equation can be sim-

(1.4.6)

plified to
2
y3 + (oyo + Boyp)
Bo

When ¢, is expressed in terms of the particle coordinates in this way it is known as the

= ¢y (1.4.7)

“Courant-Snyder” invariant. Note that the Courant-Snyder invariant is a property of a
particle while emittance is a property of a beam—an unfortunate clash of the symbol e
having different meanings.

The purpose in introducing the beam ellipse was that its evolution is more significant
than that of any one particle. Substituting from Eq. (1.2.6) into Eq. (1.4.4), the matrix of
coefficients of the form expressing ¢, at s is given by

(@ 5) = (G w2 &) &) (e )

(1.4.8)



14 Photon Beams/Electron Beams

This can be multiplied out to be made a bit more explicit:

B C? —208 S? Bo
al=1|-coc cs+sc -S| | a|. (1.4.9)
~y c? 205 s Y

1.5. The Beam Envelope

To interpret the meanings of the lattice functions 3, a, and ~ one can study the geometry
of the beam ellipse, as shown in Fig. 1.5.1. Of greatest interest is the maximum vertical
excursion E(s) of the ellipse, since this can be compared with a scraper or other beam
obstacle to see whether the particle or ray will “wipe out”. A handy way of locating this
point (point M in the figure) is to require that Ve, have no y' component. From Eq. (1.4.7)
the result is ay + By’ = 0, and

Ey(s) = veB(s). (1.5.1)
The aperture “stay clear” must exceed Fy(s) to avoid particle loss. It is because of the

appearance of 8 in this formula that (8 is usually considered to be the most important

Twiss beam parameter.

y/
N
T @ Mﬁ
el —a.[e/p

Q
< JEely —=
eE:@H

Figure 1.5.1: Correlating beam ellipse parameters with ellipse geometry.

The slope at point M is given by y'(M) = —ay/€/B. Since this point defines the
“beam envelope” the particular trajectory defined by point M has the same slope as the

beam envelope at s, which is given by

E, (s) = dE,/ds = %I\f% (1.5.2)
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y=Ey(9

\

Figure 1.5.2: The beam envelope FE(s) is equal to the maximum trans-
verse excursion y at longitudinal position s. Point labels M, P, and Q
correspond to Fig. 1.5.1.

Equating y' to Ej, yields

p' = —2aq, (1.5.3)

meaning that (except for factor -2) « is the slope of the curve of 3(s) plotted against s.

1.6. Gaussian Beams: Their Variances and Covariances

The joint probability distribution for a “Gaussian distributed” beam is

1 o €
Y=Kexp |-y (7 = Kexp -2 1.6.1
p(y.y) eXP( 2,7 \a 5)? P50 ) (1.6.1)

where the factor K has to be chosen to fix the normalization. (Recall that the combination

yT (Z g) y, being the Courant-Snyder invariant, has the same value everywhere in
the ring.) This probability density falls to e~/ when ¢, (as given by Eq. (1.4.7)) is
equal to a specified beam emittance €,;. This distribution is simpler when expressed
in terms of erect coordinates ¥ = R™'y, where R is the rotation matrix of Eq. (1.4.3),

but applicable at lattice point s. Because this transformation is a simple rotation the

probability distributions are related by p(y,7') = p(y,y’), and hence

_9 —/2
(1Y) L exp( i i ) (1.6.2)

 2meyy 2¢,08  2€y4/B

Here the normalization is easily done and has yielded K = 1/(2me, ).
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The elements of the “variance-covariance matrix” are the expectation values, or mo-

ments, < y2 >, < yy' >, < > >:
<y> <yy > T oo a(<7> 0
<<yy'> <y'2>>: <yy >=<R7yy R>=R ( 0 <§'2>>R
:R—1<€y,bB 0 )R.

0 6y,b/B 16.3)

The expression on the right hand side can be obtained from Eq. (1.4.5):

(—Ba _Va>:(l g>_1:R_1<E 1?3)1‘- (1.6.4)

Finally then, we obtain

< <y’> <yy >> _ ( €y b —Gy,ba> (1.6.5)

<yy' > <y?> —€y b €y b

For the special case o = 0 this can be easily checked.
It has been shown then that (except for factor €,;) the matrix of coefficients in the
quadratic form for €, is the inverse of the variance-covariance matrix. Commonly (for

example in the program TRANSPORT) the variance-covariance matrix is designated as o

2 /
< > < > o o -
o — v vy R p . (1.6.6)
<yy > <y > 012 0922 - 9
Because of this relation, the known evolution of the beam Twiss parameters (see the first

of Egs. (1.4.8)) can be used to obtain the evolution of o:
o — MT0'0M. (167)

Note that it is M appearing in this equation, whereas it was M™! that appeared in
Eq. (1.4.8).
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1.7. Pseudoharmonic Trajectory Description

It has been seen in Eq. (1.5.1) that the beam envelope scales proportional to /8. One con-
jectures therefore, that individual trajectories will scale the same way and be describable

in the form
y (s) = av/B(s) cos (¢ — ), (1.7.1)

where 1) depends on s and a is a constant amplitude. This form has to satisfy Eq. (1.2.1),
and the cos(1)—1)g) “ansatz” is based on the known solution when K (s) is, in fact, constant.
This is the basis for naming the trajectory description “pseudoharmonic”. As 3 appears in
this equation, it has no apparent “beam” attribute and it will be referred to as a “lattice
function”. Differentiating Eq. (1.7.1) we get,

af
/i cos (1) — 1) (1.7.2)

Substituting into Eq. (1.2.1) we can demand that the coefficients of sin and cos terms

y' (s) = —ay/B(s) ¢ sin (1 — ) +

vanish independently, since that is the only way of maintaining equality for all values of

1. This leads to the equations

By + By =0,
) ) 12 ) (1.7.3)
288" — B — 452" + 467K (s) = 0.

From the first equation it follows that 4’ is constant. To obtain the conventional de-

scription we pick this constant to be 1 and obtain

1 5 ds'
boor v =utn [0

Since the argument of a harmonic wave is 2ws/wavelength this permits us to visualize

¥ =

(1.7.4)

27((s) as a “local wavelength”. Substituting into the second of Egs. (1.7.3), we obtain

1+p%/4
—

This is usually considered to be the fundamental defining relationship for the lattice (-

B =28K +2 (1.7.5)

function. A “first integral” can be obtained by combining Egs. (1.7.1) and (1.7.2) to give

2

y / BI 2_ 2 17
§+6 v—ogY) = (1.7.6)
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According to Eq. (1.5.3) we have 8’ = —2a, so this result confirms the constancy of the
Courant-Snyder invariant, (Eq. (1.4.7)) and a? can be identified with what was previously
called €, . There is an essential difference however. In Eq. (1.4.7) the constancy referred
to all points on the beam ellipse. Here it refers to all points s on the ray or trajectory.
Fortunately, as the symbols have been introduced, one can now afford to forget this dis-

tinction.

1.8. Transfer Matrix Parameterization

The transfer matrix from sy to s can by obtained by substituting pseudoharmonic trajec-

tory formulas into Eq. (1.2.6). The sine-like and cosine-like solutions are

C (s,50) = \/B/Bo (cos (1 — 1by) + g sin (1 — 1))
S (s,50) = v/BBo sin (¢ — 1) .
As a result the transfer matrix is
4 (cos (1 — o) + agsin (3 — 1)) VBB sin (¥ — 1))

—(14+apa) Sin(lﬁ—wo;jﬁ(ao—a) cos(y—1bp) /% (cos (1 — vp) — asin (¢ _(?08))2)

(1.8.1)

M (sg, s) =

Since these parameters have arisen from describing the “lattice” of focusing elements,
one can call them “lattice Twiss parameters”. The evolution of beams or particles with
distance s along the beam line, can be represented by specifying s-dependent parameters,
B(s),a(s),¥(s),..., instead of in the form of Eq. (1.2.6).
In the special (and important) case 8 = fy, @ = ap, Eq. (1.8.2) reduces to
M = <cosu+'asinp, Bsinp,. ) , Where = 1+a2. (1.8.3)
—ysin u COS [ — ' S1n L I}

This is known as the standard Twiss parameterization of a 2 X 2 matrix with unit deter-

minant. One should confirm that this form has the correct number of free parameters and
the correct determinant.! This form will turn out to be most useful for describing periodic

focusing arrays, for example the “once-around” transfer matrix for a complete storage ring.

t Any valid transfer matrix can be expressed as in Eq. (1.8.3), but it is a mistake to suppose that the
parameters 3, a, p, would bear any simple relation with the parameters §, a, @ appearing in Eq. (1.8.2),
except in the special case mentioned at the start of the paragraph.
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1.9. Reconciliation of Beam and Lattice Parameters

As yet no clean connection has been demonstrated between beam-based Twiss parameters
and lattice-based Twiss parameters, even though the same symbols have been used. Fur-
thermore, the lattice properties are fixed, once and for all, while the beam properties can
vary wildly, depending upon injection tuning or mistuning. It is clear, therefore, that there
can be no simple equality between beam parameters and lattice parameters. Nevertheless

there is an extremely close connection that will be investigated next.

1.9.1. Beam Evolution Through a Drift Section

Suppose the region from sy to s is purely a drift section. According to Eq. (1.3.1) and the
first of Egs. (1.4.8), the beam evolution is given by

(a)=(L )@ e)6) (1.9.1)

Completing the multiplication, one finds

B = B — 295 + 70 5%,

a=ay—Ss, (1.9.2)
Y = 70.

One finds, upon substituting /(s) given here into Eq. (1.7.5), that the beam-based 3(s)
satisfies the lattice-based differential equation, at least in drift sections. If the two versions
of B are equal at one point in the drift section, they will remain equal throughout the
section.

An important special case of Eqs. (1.9.2) describes the evolution of § away from a
“beam waist” where @ = a* = 0 so that v* = 1/5* and 8 = * has an extreme value,

which we take to be a minimum. Substituting into the first of Eqs. (1.9.2) we obtain

52

B(z)=p"+ 5 (1.9.3)

A “waist length” can be defined by

AP = g, (1.9.4)
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it is the length after which the beam transverse-dimension-squared has doubled.T Because

the transverse beam size is proportional to /3, the variation of the beam half-width is

given by w(z) = w*y/1 + (z/5*)?, as shown in Fig. 1.9.1.

w(2)

Figure 1.9.1: Beam half-width w variation near a beam waist.

1.9.2. Beam Evolution Through a Thin Lens

Consider next the beam evolution in passing through a thin lens. According to Eq. (1.3.4)
and the first of Egs. (1.4.8), the beam evolution is given by

@1 gﬁ:((l) _1q> (Z: %:) <_1q ?) (1.9.5)

Completing the multiplication, one finds

Bt = B,

ar = a- — fq, (1.9.6)

Y4 =7-—20_q+ B¢
Problem. Equations (1.9.2) showed that evolution of beam-based («a,f3,7) parameters
through a drift section is governed by the same formulas as is the evolution of particle-
based («, 3,7) parameters. Using Eq. (1.7.5), show that the same statement can be made

for evolution through a thin lens. That is, use Eq. (1.7.5) to calculate the “kink” in the

B-function caused by a thin lens, and show that the result agrees with Egs. (1.9.6).

(P)

t The superscript P on z ;. refers to the implicit assumption that particles (as contrasted to the waves
that will be introduced shortly) are being analysed.
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For lines made up only of drifts and thin lenses, it has therefore been shown that
beam-based and lattice-based Twiss functions, if once equal, remain equal. Since, as
stated earlier, all transfer matrices can be constructed from drifts and thin lenses, the

result is true for any general (uncoupled) beamline.

1.10. Photon Beam Features “Inherited From” the Electron
Beam

It has been stated repeatedly that all formulas so far apply to either electrons or photons.
To analyse the storage ring as a source of synchrotron radiation, athough we initially
emphasize electrons, we are ultimately more interested in the photons. It is the high
“intensity” available from the storage ring that justifies using such large and expensive
apparatus and justifies our continuing effort to quantify and increase intensity. The word
“intensity” has been placed in quotation marks to warn that it will be used loosely to stand
for any one of the numerous measures going by such names as brightness, brilliance, current,
illuminance, intensity, inverse emittance, luminance, (spectral) radiance, and so on. To
the extent these terms are not equivalent, they refine different essentials of the radiation
such as angular, spatial, or frequency spread, or power content. We will return to some
of these things in detail later on. (Of course intensity will also retain its unambiguous,
quantitative, relationship to power flux and the Poynting vector.)

For now we note that the photon beam “inherits”, from the electron beam, limitations
on all these measures. The main measures of electron intensities are total number N of
circling particles and I, the total beam current. They are related by

_ _.nE eg.
I=eNf=eNg ( 0.1A), (1.10.1)

where f is the revolution frequency and C is the circumference. A prototypical differential
measure of electron intensity is I/€, j; where “emittance” ¢, was introduced in Eq. (1.6.1).
There is a (not particularly well-known nor well-developed) accelerator formalism that
identifies emittance with entropy.Jr One thing for sure though is that emittance has a strong

tendency to increase. This could probably be put on a firm, second law of thermodynamics,

t 1 learned this from ex-CLEO-postdoc, Garry Trahern, but the only reference I know is Emittance,
Entropy, and Information, Lawson, LaPostalle and Gluckstern, Particle Accelerators, 5, 61 (1973).
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foundation. The emittance of a particle beam decreases only because of stochastic cooling
(which does not violate the second law) or because entropy is carried off by radiation.
Even if the electrons form a perfect pencil beam (no spatial or angular spread) and are
perfectly monochromatic (no momentum spread) the radiated photons have a continuous
frequency spread (usually scaled to the so-called “critical frequency” w..) and a finite

angular spread. The characteristic radiation angle is

1 mc? eg. 0.0 MeV
Or typ. = ; - E

& = 10—4.> (1.10.2)
This is a very small angle. Is it negligible? That is, is this spread small compared to the
angular spread of electrons in the storage ring? In one sense it is certainly small, since
the electron’s horizontal angle ranges through 2.7 On the other hand, the typical vertical
electron angle (from Eq. (1.6.5)) is

€, eg. [1078m-rad 4
Oy typ. = 1/711 ( = ‘/T =10"" (1.10.3)

(Unfortunately) according to these estimates, O typ. and O 4yp. are comparable in mag-
nitude, so neither can be neglected. Of course the factors entering Eq. (1.10.3) are, to
some extent, subject to adjustment. For example, 8 can be easily increased by 10 or 100,
so the electron angle can be made negligible. But one knows (from Eq. (1.6.5)) that a
proportional increase in spatial spread is inevitable.

The ultimate photon distribution is a convolution of the electron distribution with
the radiation pattern. Based on the above estimates, the horizontal angle of the photon
relative to its radiating electron can sometimes be neglected, but vertical distributions are
influenced both by the electron distribution and the distribution of vertical photon angles

relative to the electron.

T The estimates in this section will have to be reconsidered when insertion devices (wigglers or undulators)
are introduced. For now we just consider the pure synchrotron radiation.
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1.11. Light: Waves or Particles?

Another issue to be considered, at least qualitatively, is whether it is valid to consider
synchrotron radiation as made up of discrete photons (as we have been doing.) When we
consider undulators we will find that wave features are essential, but we will now see that
treating the synchrotron radiation from the regular arc bending magnets as particles is
justified for sufficiently hard X-rays.

For light of frequency v, wavelength A ‘& 103 A4; (being near ultraviolet, this is toward
the long wavelength end of the range of wavelengths we are likely to be interested in) the
wave number k is given by

k:@:%7r (eé' 2 X 1071/m). (1.11.1)
C

It is possible to form, say at z = 0, a “circular point image” of radius wq using plane waves
of this wavelength, all traveling more or less parallel to the z axis. But the width w of such
a wave necessarily increases for z # 0. By symmetry the spreading is +z-symmetric, so
the leading deviation from wyq is quadratic in z. It is shown on p. 268 of Optical Coherence
and Quantum Optics, Mandel and Wolf, that the spreading of a cylindrically symmetric

beam is given bny
52

k2wk/4

In a purely particle picture discussed up to this point the beam spreading is given by

w? (z) = wi + (1.11.2)

Eq. (1.9.3). With w being proportional to /3 these dependencies are strikingly similar.

We can now define a “wave-based, waist length” zfvgs)t
2
w) _ kuwg
Zwaist = T, (1113)

as the length over which the beam transverse-dimension-squared doubles according to wave

(P)

waist

theory. This can be compared to z as given by Eq. (1.9.4). Since the beam waist is

determined by the electron beam we set w% = €y and obtain

Z(W) ke b e.g. 7 8

waist _ Y, S rx10" x1078) . (1_11,4)
AP T

wais

t Essentially the same formula is derived in the chapter of these notes devoted to free electron lasers.
The spreading can perhaps also be calculated by using only the Heisenberg uncertainty principle, since the
transversely localized beam spot has to have a matching angular spread.



24 Photon Beams/Electron Beams

For the particle picture to be justified this ratio should be larger than 1. For the example
numbers that have been used (near ultraviolet) the condition is not quite satisfied (in the
vertical dimension) but for shorter wavelengths it becomes progressively more valid. On
the other hand emittances smaller than the value €, = 10~8 m assumed here can certainly

be achieved, and this makes the condition harder to meet.

In the jargon of synchrotron light sources, the radiated beam is said to be “diffraction
dominated” when the ratio in Eq. (1.11.4) is not large compared to 1. This is more likely

at long than at short wavelengths.

1.12. Measures of Intensity, Flux, Brilliance and Brightness

An X-ray beam consists of the synchrotron radiation (inevitably restricted by a fixed
aperture) some five or more meters from an ID (insertion device) in the storage ring. The
least ambiguous property of such a beam is its power. Also, since the radiation comes
in the form of photons, one can count the photons coming down the line one-by-one.
Any apparatus making use of this beam has a “nominal” or “central” wavelength Apom,
and in most cases it is only the photons close to this wavelength that are useful. For
purposes of comparing the relative usefulness of different X-ray sources, this bandwidth is
conventionally taken to be Ayom/1000. “Flux” is defined to be the number of photons per
second within this band.T The more nearly parallel these photons are, the more useful they
are, and one defines “brightness” to be (number of photons within 0.1% of nominal) /solid
angle/time. However, defined in this way, brightness is not very useful, because it is not
an invariant measure; i.e. it is altered by optical elements (lenses and drift spaces) along
the beamline. To obtain an invariant measure, one defines the “brilliance” to be (number
of photons within 0.1% of nominal)/area/solid angle/time. By Liouville’s theorem, this

quantity is preserved by arbitrary paraxial optical systems.i Brilliance is therefore much

f In every area of physics other than synchrotron light, the term “flux” has units of “something” per area.
But the definition given here seems to be the agreed-upon usage.

! The distinction between brightness and brilliance is is much like the distinction, in beam physics, between
r.m.s. transverse beam “spot size” o, and transverse emittance €., which are related by o, (s) = \/€, 8. (s).
Because the lattice function 3,(s) depends on s, “spot size” o,(s) also depends on s. But the ratio €, =
02(s)/Bx(s) is invariant; i.e. independent of s.
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Table 1.12.1: Beam Intensity Measures

parameter unit invariant?
power Watt yes
flux photons/0.1%BW /s yes
brightness photons/0.1%BW /(mrad)? /s no
brilliance photons/0.1%BW /(mrad)?/(mm)2/s yes
cleanliness photons/0.1%BW /(mrad)?/(mm)2/Joule yes

preferable to brightness, but neither can distill into a single number all relevant spectral

featulresﬁI

There is another measure that has no name, and is rarely spoken of except implicitly,
though it should be, since it is important in the design of ID’s, and is what makes un-
dulators attractive. It measures the fraction of the power that is actually useful. For an
apparatus that happens to make use of only those photons within the nominal bandwidth
(0.1%) and the nominal spot-size xsolid-angle product (which is 1 mrad?mm?) this measure
would be brilliance/power. For low flux beams this measure may be inessential because
monochromators can filter out the useless photons effectively, but for high flux beams,
power expense may be appreciable and power handling difficult. When “raw power” con-
siderations become important, a design that produces mainly useful photons is obviously
desirable. An ideal ID would have enough flexibility to meet this goal. I will refer to this
brilliance/power ratio as “cleanliness”, since it quantifies the mess that may have to be
cleaned up. Also I adopt “cleanliness is next to godliness” as one design criterion.

We will only make some estimates that illustrate the considerations involved. A pro-
totypical synchrotron light beamline is shown in Fig. 1.12.1. For various practical reasons
it is difficult to make the length L of the beamline really short. The separation distance

from the accelerator, D ~ L?/(2R), is at least a few (say 2) meters, so

L ~V2RD (eé' V2 % 100 x 2 & 20 m.) (1.12.1)

Y The fact that some people interchange the meanings of “brightness” and “brilliance” makes the distinc-
tion more confusing. Following Sol Gruner’s recommendation, and APS Report ANL-88-9, I believe that the
usage here is more “correct” and urge that it be adopted universally.
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aperture

b))
C(

O

Figure 1.12.1: Prototypical synchrotron light beamline.
A result to be derived in a next chapter (Eq. (2.2.6)) is that the total energy radiated, per

electron, per turn, is given by

4
Ured = Cf (eé"lMeV), (1.12.2)

where C,, = 0.885 x 10~*m/Gev?® and FE is the electron energy. This formula gives Uy rad
in GeV units. A rather small fraction (Af/(2m)) of all the radiated energy passes through
the aperture AD. Combining these results with Eqgs. (1.10.1), the total power through the

aperture is

I ., E*AD 1 1072 1 tt
power = - C ( 100 V/ex —— — =80T — ) (1.12.3)

"R L 2« 20 2m (horizontal)cm

Another result to be derived later is that the total number of synchrotron radiation

photons emitted, per revolution, by a single electron in a uniform ring, is given by

ecC- E°B
Ny = —1—— =0.06627, 1.12.4
0= 0.3079vu, i ( )

where the “critical energy” u., ( ‘B3 keV) will be defined later. One need only accept (for
now) the remarkable facts that this number is independent of magnetic field B and that
the dependence on F is simple proportionality to fy.]L Combining this with Egs. (1.10.1)

and (1.12.4), the total number of photons passing through the aperture per second is
I AD . 1 AD 1 AD phot
N =~ 006627 > (e 28 hotons,

[l=

662 T — = 0.66 x 1021 T
oL 1.6 x 10-19C L 2r x I s

(1.12.5)

T The fact that the number No can be defined at all is because the spectrum is not divergent at long
wavelengths—there is no infrared divergence.
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By convention the “flux” F, counts only photons in an energy range Au = 10_3u0per.
where woper. is the operative photon energy. This is the appropriate figure of merit for
apparatus that responds only to a narrow band of energies. Let us measure photon energy
w in units of the “critical energy” wu.. (i.e. u, = 1.) The energy spectrum is described by
a (normalized to 1) probability distribution P,(u) such that P,(u)du is the probability a
particular photon energy u lies in the range u to u + du. The “number spectrum” is then
given by
dN

= =NPu(w) . (1.12.6)

For purposes of estimation, let us take uoper, = 4. With u measured in units of u. (as we
are assuming) it happens that P, (1) ~ 0.1.} Then F acquires a factor P, (1) 1073 ~ 1074,
compared to Eq. (1.12.5):

AD photons/s

= 0.66 x 10171 .
a % L 01%BW

(1.12.7)

One is also interested in intensities that are differential in solid angle and source area—
though the rates given so far are already proportional to AD. One complication is that, at
the plane of the aperture, the horizontal angle is correlated with the horizontal position.
This is like the correlation of rays emerging from a point source. This correlation is espe-
cially significant if A§ >> 1/, which is commonly the case. In principle this correlation
can be removed by sending the beam through a cylindrical, horizontally-focusing lens. In
the interest of obtaining a simple formula, let us assume this has been done (whether or not
it is practical)]L This compensates for the longitudinally spread out source and validates
treating all the photons as being radiated from the same, constant s, plane. Neglecting
the photon angle relative to the electron, the photon beam simply inherits the emittances
of the electron beam. According to Eq. (1.4.2) the product of transverse phase space areas
is

AzAz' AyAy' = w6y pey p- (1.12.8)

t Since this approximate value becomes implicitly contained in all subsequent formulas, one should check
the actual numerical value of P,(u.) before using the formulas for accurate work.

T Lenses are certainly practical for the visible part of the spectrum, but not necessarily for ultraviolet
and X-rays. Unfortunately the approximations that have been made are somewhat more valid for the hard
photons than for the soft. So the formulas have only semi-quantitative validity, for one reason or another,
at all wavelengths.
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(Recall that this assumes somewhat unrealistic, uniform-within-ellipse, vanishing-outside,

phase space distributions.) A six-fold differential flux is then given by

d°N, d°N,
- P, (u). 1.12.9
Jide do dy dydu - didede dydy ™ (1.12.9)

and the brilliance is given by

dSN,
B(ue) = G de dy dy du

10~ L 0.0662 v AD L. (1.12.10)
e 2L m2€y pey p

A virtue of formula (1.12.7), for flux F, is that it contains only unambiguous factors.
The formula for B is not quite so unambiguous, though the extra (emittance) factors are
advertised storage ring parameters, known at the percent level. For CESR, a typical value
is €, & 2 X 10~ "m-rad. The factor ey7bzex7b/100, is somewhat less well known (and, in
colliding beam operation, varies with time). But, if necessary, €, can be known to several
percent accuracy. It must be remembered though, that there are different conventions
governing the definition of emittance. For example, the CESR values just mentioned are
r.m.s. values, not necessarily quite right for immediate substitution into Eq. (1.12.10).

The brilliance parameter B is used primarily as a figure of merit specifying wiggler
and undulator beams in “later generation” synchrotron light sources that have ultra-small

2 mr?, which

emittances. Customarily the units of the phase space factor are taken as mm
reduces the numerical value by 10'2 compared with M.K.S. units. Even so, since beam
dimensions in dedicated synchrotron light sources are typically small compared to a mm,
the numerical values of B can exceed the numerical value of F by several orders of mag-
nitude. Unfortunately the photon spreads for these beams contribute importanly to the
brilliance. One must therefore be very careful in using the brilliance as a figure of merit.
Technically, the brilliance is the value of the derivative shown in Eq. (1.12.10) evaluated
at the origin. Since the distribution is highly peaked, Eq. (1.12.10) is unreliable for high
brilliance beams.

The external factor AD/(2wL), characterizing the external acceptance angle is, of
course, well known, but certain idealizations have gone into Eq. (1.12.7), that can cause it

to break down, especially at long wavelengths. Also the brilliance given by Eq. (1.12.10)

must still be corrected for the actual operating energy:

B (u) = B (uc) UOPZZ iz EZZTL)

(1.12.11)
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(As mentioned in a footnote, for accurate work, the actual value of P,(u.) has to be
checked.)
Also it is important to appreciate that only radiation from regular arc bends has been

considered. Obviously wigglers and undulators have to be considered separately.



Chapter 2.
Synchrotron Radiation: Wave Properties

An electron traveling in a uniform magnetic field emits synchrotron radiation. In this chap-
ter we will assume the orbit is a continuous circle, but the formulas can be easily adapted
to shorter segments (as long as they are not too short.) The so-called “arc magnets” of an
ordinary electron storage ring amply satisfy this requirement, but some insertion devices
(and proton accelerators) may require special treatment.

Though the theoretical formulas describing synchrotron radiation are well within the
difficulty level of texts like Jackson, Classical Electrodynamics, their accurate evaluation is
rather difficult. In this chapter the most important ideas and formulas will be introduced,
and plausible approximation schemes contemplated, but accurate evaluation will not yet
be attempted.

The text I recommend (and follow) for everything up to, but not yet including, syn-
chrotron radiation, is Griffiths, Introduction to Electrodynamics. For detailed synchrotron
radiation calculations there is, of course, Jackson. Other good references are Albert Hoff-
mann, Characteristics of Synchrotron Radiation, in Synchrotron Radiation and Free Elec-
tron Lasers, CERN 98-04, and Julian Schwinger, On Radiation by Electrons in a Betatron,
1945, (transcribed by Miguel Furman), LBNL-39088/CBP Note-1996.

The most subtle physics associated with synchrotron radiation is the concept of re-
tarded time. Omnce that has been grasped all that is left is mathematical manipulation.
Unfortunately these manipulations bring in Macdonald functions and Airy integrals and
other complications too fierce to mention. This mathematical complexity tends to obscure
the physics. A major purpose of this chapter is to attempt approximations for which only
elementary mathematical functions are adequate. Most of these approximations are well
justified, but two are rather poorly controlled. The first of these is a “physics” assumption.
Speaking very loosely, it will entail an uncertainty at the 30% level. For some purposes an
error of this magnitude might be tolerable but still it is uncomfortably large. Fortunately
we will later be able to repair this approximation. The second poorly justified approxima-
tion is of a purely mathematical nature. It will introduce an uncontrolled uncertainty at

perhaps the 10% level.

- 30 -
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The basis for these error estimates is that an exact formulation (due originally to
Schwinger) is known. This being the case, one might well ask, “why not just study the
exact theory?” The reason, as already stated, is that the exact theory is mathematically
repulsive and does not provide much useful intuition. A consequence of this is that one
must later approach new devices, such as undulators or free electron lasers, without much
intuitive guidance. It is hoped that the approximate formulation presented here will im-
prove intuition concerning where the dominant contributions and polarizations come from

and into such subtleties as coherence and diffraction.

Even if these justifications are all just rationalizations, following the formulas in these
notes can serve for “back of envelope” calculations and the deviations can serve as warm-up

to the herculean task of following an exact treatment.

2.1. Electric Field Calculation

The basic formulas on which synchrotron radiation is based are the so-called “retarded

potentials”:

V(r,4) = 4;60///%613#, A(r,t) = Z—i///p(rl’t’“)R" (tr) oy

(2.1.1)

where r’ and r are know as “source point, Q" and “field point, P” respectively, as shown in
Fig. 2.1.1. The integrals run over all charge-containing volumes. Formulas essentially like
these should be familiar from elementary E.&M. The present formulas differ from electro-
and magnetostatics only in the seemingly inconsequential respect of allowing for the time
of signal propagation from r’ to r. That is, to obtain the fields at P at time ¢ the integrands

are to be evaluated at a “retarded time” ¢, such that

t:tr+§. (2.1.2)

(If the charge density p is time-independent, this modification has no effect, and Egs. (2.1.1)
reduce to the Coulomb and Biot-Savart laws.)
This retardation modification makes an important difference only when charges are

moving at close to the speed of light, which is of course the case in a synchrotron light
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moving

charge )
/
)/ r r Q
> R

center of

/ curvature
Figure 2.1.1: Symbol definitions: r = radius vector of “field point” P;
r’ = radius vector of “source” point ); R = distance from source point

to field point. R is the local bending radius and R is the outward normal.
When light from @ gets to P the particle is already at Q.

R
Q 9 R P viewi ng
q screen

source. There is a kind of “sonic boom” phenomenon in which, if a source particle ap-
proaches the field point P at high speed, signals from an appreciable path interval “pile
up” at p.t

The electric and magnetic fields are obtained from the potentials byT

E:—VV—%—‘?, B=VxA. (2.1.3)

It is important to relate retarded time interval dt, to corresponding observation time
interval dt. Consider the case shown in Fig. 2.1.1 of the single charge ¢ moving with speed

v, and with observer P not moving. Differentiating Eq. (2.1.2), and using the relation
v(t,) = dr'/dt,, yields

dt = dt, <1+%Z—z> = dt, (1—75-@). (2.1.4)
It is because the factor in parenthesis on the right hand side can be extremely small
that dt, can greatly exceed dt. This situation occurs only when v ~ ¢ and v is directed

approximately toward P.

t Because the particle speed v cannot exceed ¢, light from two points on the particle orbit cannot arrive
g
at P simultaneously, so synchrotron light is not ezactly analogous to a sonic boom. But with the speed of
light being six orders of magnitude higher than the speed of sound, a gigantic “magnification” is nevertheless
possible. A more nearly exact analog of a sonic boom is Cherenkov radiation.
t To correlate formulas in this paper with formulas in papers by Albert Hoffmann, one must appreciate
that his pugA is the same as our A.
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Because of the implicit relation between ¢ and ¢,, it is extremely tedious to evaluate
the derivatives in Eq. (2.1.3). The result of doing it, and retaining only “radiation” terms,

is that electric and magnetic fields at P are given by

g1 [Rx((R-3) <)

- 4megc R ( A.X>3
C

E (r,t)
(2.1.5)

ret.

1 -~
B (r,t) = ER x E(r,t).

The terms that have been dropped are unimportant for the observer at P since they
describe the fields “attached” to the charge; they are appreciable only near the point @’
where ¢ has arrived at time ¢. It is a sufficient approximation to take the factor 1/R outside
the retarded time calculation since R varies little over the relevant range. All formulas so
far have been known for about a century.

All quantities in Eq. (2.1.5) are to be evaluated at the retarded time. It is important
to specify the meaning of v unambiguously. For circular (radius R) motion at constant
speed v, its magnitude is |dv/dt| = v?/R, which is constant, and it points toward the
instantaneous center of curvature. While thinking about this point let me introduce an
alternate expression for E that will be needed later on:

a/R [ d fx(fx%) -|

dt 1-R . J
L ret.
~ q/R 1 d [ —vi/ec
Cdmege |1 R .YV dt 1_73\.%

where v | is the component of v normal to R . This surprisingly simple result can be proved

E(r,t) =

1
dmege |1 - R .

o<

(2.1.6)

o<

by straightforward differentiation, (as before) treating R as constant. The derivative d /dt
acts on a function in which v is the only variable and, when d/dt does act on v it generates
v, whose meaning has already been specified.

A rather reckless approximation (the first of those mentioned in the introduction)

simplifies the final factor of E in Eq. (2.1.5):

B (R0 2) - (7-2) (R -1 F(7-2) =107,

(2.1.7)
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The motivation behind this simplification is that v is approximately orthogonal to R.
What makes it reckless is that the other factors in this equation all cancel in lowest ap-
proximation, and v is orthogonal to R only at the center of the radiation pattern. Using

c = ppep, approximation (2.1.7) leads to

E(I‘,t) ~ _Z_O % ﬁ . (218)
7'[' —_—~
1-R -
ret.

Cc

Comparison with Egs. (2.1.1) and (2.1.3) shows that this contribution to E comes from
the term —0A /0t—one of the factors (1 ~R v /c)~! comes from the previously mentioned
piling upT, and the other comes from the d/dt operation in Eq. (2.1.3).

From the second of Egs. (2.1.1) one can visualize Ap as resulting from the simple
translation of v from () to P. Then Ap is determined from the pure rotation of v as the
particle follows its circular path and this is what yields the radial electric field Ep. In
this approximation the polarization is such that the electric field, being parallel to v, is
purely horizontal (assuming the bend plane is horizontal). The magnetic field, given by

the second of Egs. (2.1.3), is vertical.

If the charged particle ¢ is traveling in a circle of radius R we have v = ~R 2 /R and
q 1 R
E(r,t) ~ 2.1.9
(r:?) dreg RR = v\? ( )
(7
ret

The range of validity of approximation (2.1.7) remains to be irwestigated,i but this formula
is certainly easier to use and remember than the exact formula (2.1.5). (It should lead to
a conceptually simplified discussion of wigglers and undulators.)

From the previous chapter we know that typical values are R = 100m, R ~ 20m.
Except for the factor (1 —@\-v/c)_Q, the magnitude of the field given by Eq. (2.1.9) would
be that of a point charge ¢ at (the very great) distance vRR. But the denominator factor

T Griffiths (for example) shows that the integrals in Eq. (2.1.1) acquire a factor (1 — R - v/c)~! because
of an effective elongation of charged volumes by this factor with no change in charge density p.

I Remember that the range of validity of approximation has not been investigated, so the reader is advised
to be skeptical of seemingly over-simple results, and to refer to exact calculations for more accurate formulas.
The approximation made in Eq. (2.1.7) retains only the dominant contribution to horizontal polarization,
and keeps no vertical polarization component. For reasons I do not find particularly defensible, Hoffmann
refers to horizontal polarization as “o-mode” and vertical polarization as “m-mode”.
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~ v [ 1 9 1
1-R-—=1-cos?Vy/l— =5~ —+ —. 2.1.10
c o8 2 2+2’)/2 ( )

where 1 is the angle between v and 72\, and v = E/mc?. The maximum enhancement

18

factor is therefore 44 "2 4« 106, This factor can convert E as given by Eq. (2.1.9) into
an extremely large electric field. The same formula shows that the electric field has fallen
to one quarter of its maximum value already when ¥ = ¢y, = 1/7v "2 10=4, This falloff
occurs both horizontally and vertically. The radiation pattern is often compared to the

headlight of a locomotive rounding a curve. This is illustrated in Fig. 2.1.2.

W 9

X

vt -
— intersection
R of V(extended) and
Viewing screen

Figure 2.1.2: Passage of the radiation maximum across the viewing
screen through observation point P.

If one arranges the time origins ¢ = 0 and ¢, = 0 to correspond then, from Eq. (2.1.4),
one has t = t,(1 — R - v/c) + ..., where the dots stand for higher powers of ¢,. We
can understand the relationship between “observer time” ¢ and and retarded time ¢, by
accounting for delays in the “electron’s signal”. A “nominal signal” is emitted toward P
at the instant the electron passes the point whose tangent intersects the viewing screen at
P’s horizontal position x = 0. A signal emitted at a later retarded time gets to P almost
at the same observer time because the electron is going almost at the speed of light and
almost in the optimal direction. There are however three delays relative to this. Because

the electron is a bit slow, a delay

v iy
t@——)% , 2.1.11
" c 22 ( )

is introduced. There is also a delay due to the slightly non-optimal vertical path taken by
the electron and another due to the slightly longer horizontal path taken by the electron
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before it emits its signal. These delays are calculated in Fig. 2.1.3. Combining these
deviations and taking both time origins so the signal arrive at the screen originat t = ¢, =0

we get

1 2 C2t2 2 1+ 2,1,2
twtr(—2+¢—+ g>%tr#.
2y 2 6R 2y

Unfortunately, without the approximation indicated, this is a cubic relation between ¢

(2.1.12)

and t,. The electron’s motion is described simply in terms of ¢, but becomes extremely

complicated when expressed in terms of ¢.

Figure 2.1.3: Top view of geometry for calculation of retarded time. Fol-
lowing the curved path introduces delay t,.— (R/c) sin(ct,/R) ~ c* 3/ (6 R?).
There is also a delay ~ t.1)%/2, because the electron stays in the median
plane while a signal from the origin takes a more direct path.

A feeble estimate of the importance of the nonlinear term can be based on Fig. 2.3.1
(which is copied from Hoffmann.) It amounts to repeating the retarded time calculation
for a typical retarded time, where “typical” refers to the fact that the radiation is largely
contained in a cone of angular radius 1/ about the electron direction. Setting to zero
the radiation outside this cone, the start of the radiation pulse comes from A and the
end comes from A’. The difference of arrival times of these signals is equal to the time

difference At between electrons taking a curved path and photons taking a straight path;

2R 1 2R 1 1 4 R
At = — E—’)/sin — X — |\ l+5-1+-——=5|=7—= . (2.1.13)
ye \v 0% ye 22 62 3 y3c

One sees that this time is less than the revolution time R/c, by a factor of order v3 ~ 10'2.
Expressed in terms of frequencies, there will be frequency components at the observation

point that are greater than the electron’s revolution frequency by a factor of order ~3.
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Including a typical vertical angle 9y, = 1/ would change the coefficient 4/3 — 7/3. One
sees therefore, that only about 1/7 of the retardation is ascribable to the nonlinear (path
length) term. Of course an error scaling like 2 becomes fractionally less at smaller times
and fractionally greater at larger times. Since, if anything, 1/ is an over-estimate of what
is typical, one can be optimistic that dropping the #? term in Eq. (2.1.12) will introduce
only a small error, at least as regards dominant behavior. This is not to say that behavior
of “tails” will still be faithfully described. Later, especially when discussing the transition

from “undulator regime” to *

wiggler regime,” the correct treatment of this term will be
essential.

To make the formula for E(r,t) explicitly dependent on the observation time ¢, it is
necessary to evaluate the denominator factor Eq. (2.1.10), which depends on the angle
9, as shown in Fig. 2.1.2. Since the horizontal angle is given as a function of %,, it is

necessary to employ relation (2.1.12). I will use the approximate version, substituting into

Eq. (2.1.9) to obtain

-2
4yt 273 /R \> .
E(rt)~ 4+ 21 (1+fy?w2+<L/R> t2> R. (2.1.14)

~ dmey RR 1+ 4242

Clearly, even apart from this approximation, this formula is valid only if the magnet can

be treated as “long”:

2R
ot
If this condition is satisfied, the full radiation cone of angle +1/v will sweep past an

L> (2.1.15)

observer at P. Otherwise, the radiation pattern will be limited to a shorter time interval.

Inequality (2.1.15) is not satisfied in an undulator.

2.2. Total Power Radiated and its Angular Distribution

The Poynting vector observed at point P is
S:—ExB:—Ex(RxE):—R, (2.2.1)
o HoC Ho¢
where B has been obtained from Eq. (2.1.5) and E is known to be perpendicular to R
(in the radiation field.) The power passing through transverse area (R di)(R df,) in the

observation plane is given by |S|722 dS2, where 0}, is a horizontal angle away from the local
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center (where the maximum falls at ¢ = 0) and dQ2 = di)df;,. From the single charge ¢
this flux is strongly peaked, both in ¢ and in vertical angle . The total energy dU passing
through a band of width R df, is given by

2

. 2.2.2
o (2.2.2)

00 w/2
dU = (R d6,) /_ it /_ , (Raw)

Figure 2.2.1: Angular ranges segmented for purposes of calculating total
energy carried away from ring by a single passage of the moving charge ¢q. To
avoid worrying about “double counting” and “leakage” through tangential
edges, flux can be calculated through the dashed circle (actually cylinder.)
But the area and obliquity factors cancel in (2.2.3).

The total energy carried away from the ring can be calculated as suggested in Fig. 2.2.1.
By taking the limit df;, — 0 any dependence of the integral on horizontal angle is sup-
pressed, yet the overall result can be obtained by setting df;, = 27. Also, the fall-off with
increasing 1 is so fast that these limits can be taken to co. The total energy carried away
after one revolution of charge ¢ is therefore given by

2 o0 o0 2¢%cy8 [ o0 dt
UO%—W/ dt/ dip R? E* = “;2/ d¢/ —
HoC J— — TEQ — —
00 00 0 00 <1+72¢2+ (fj_f;/{ﬁ) t2>

(2.2.3)
It is reassuring that this result is independent of R which was chosen arbitrarily.
To complete the evaluation we use the integrals
o d 5 o d 4
[ e [Ty
—eo (a2 +b222)* 16a7b —co (1+a222)%%  3a
and obtain ) s -
5 °° d 5
Up~ — L7 / S av (2.2.5)
16 egR J_ (1_|_,YZ ¢2)5/2 12 ¢R
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According to M. Sands, The Physics of Electron Storage Rings, in International School
of Physics, “Enrico Fermi”, Academic Press, 1971, the exact value (in GeV) of Uy is

C, E* 4 -
Up= =, where C = ?” ”2 - = 0.885 x 1074 m(GeV)
(”;ec ) (2.2.6)
ro= —C _ — 981784 x 10~ m.
Amegmec?
Our estimate (2.2.5) differs from the exact value in the ratio 51/—/132 = 1.25. i.e. the

estimate is 25% on the high side.

Curiously enough, had we gone even further by dropping not just the t% term but also
the v21? term from the denominator of the coefficient of 2 in Eq. (2.2.3), the value of U
would have come out exactly correct. This has to be regarded as completely fortuitous
since, for example, vertical polarization components (included in (2.2.6)) have been com-
pletely suppressed in our approximation. Still, since the t,% correction has previously been
estimated to be considerably less important than the )2 correction, the suggestion is that
neglect of 2 terms will cause error only at the 10% level.

To improve result (2.2.5) it is necessary to refine some earlier approximations. The
terms dropped from Eq. (2.1.7) yield both horizontal and vertical polarization. Following

Hoffmann, we work with (x,y, z) components, using ¢, as independent variable,

r' R (1 —cos(vt,/R)) 0 Rsin (vt,/R)
v vsin (vt,/R) 0 v cos (vt /R)
v = | (v*/R)cos (vt,/R) 0 — (v*/R) sin (vt,/R) . (2.2
- 0 sin v cos
R —v/c — (v/c)sin (vt,/R) sinty cosyp — (v/c) cos (vt,/R)
(Components arrayed horizontally here.) With components now arrayed vertically,
e oy v p2 [ —cos(vir/R) + (v/c)cos ¢
R x ((R - —) X —> =% cos 1) sintp sin (vt,/R) . (2.2.8)
¢ ¢ ¢ sin? ¢ sin (vt,/R)

Using v/c ~ 1/(27?) and small angle approximations this becomes

= (149242 = (yetn/R))

—~ —~ Vv v c
R x <(R - E) X E) = 7R 72¢C()tr/R . (2.2.9)

Problem. This formula can be used for a more accurate determination of the total power

radiated. Note that the z-component is, except for the sign of the last term, the same
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as the denominator factor of Eq. (2.1.14). After adding twice this term, the numerator
cancels against one of the denominator factors, and reduces to our approximate formula.
In this way, find a formula that gives the overestimate. Also find the power radiated in
vertically polarized radiation. Complete the evaluation of these integrals and compare
with Eq. (2.2.6). One hopes that this will result in a tolerably accurate determination
that avoids the formidable formulas in more exact treatments. This could lead to a serious

investigation into the error that results from dropping the cubic term in Eq. (2.1.12).

Reverting to our approximate formulation, the (vertical) angular distribution of the
radius can be read off from Eq. (2.2.5):

dUp _ 5w q° AP

B "L TneoR (14 gyl (2:2.10)

Since the horizontal distribution is uniform the power radiated per solid angle is given by

dUp 5 ¢ 7°
dQ " 8 dmeR (1442 7’b2)5/2'

(2.2.11)

2.3. Spectral Power Density of the Radiation

Since we have a closed form expression for the electric field, it is straightforward to find its
Fourier transform, and from that the spectrum of the radiation. Before doing this we can
obtain a rough estimate by referring to Fig. 2.3.1 and Eq. (2.1.13). The radiation pulse

arriving at the observer can be regarded as a roughly square pulse of length

4 R
At = - — . 2.3.1
3 y3c ( )
A typical frequency is therefore approximately 1/(2At):
3 cy?
= - —. 2.3.2
““TOR (2:32)

This sort of argument does not fix the numerical factor, but we have matched the conven-
tionally defined “critical frequency” w,, and corresponding “critical photon energy” u., by

picking the factor to be 3/2. Expressed as a photon energy

3 hc  31.2406 x 107%eV-m

= = — 2.3.3
22rR/y3 2 2T R /3 ( )

Ue = hwe
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For CESR this works out to a few keV.
Proceeding more quantitatively, the Fourier transform of E is defined by
E (w eWUE (t) dt 2.3.4
W=7 L. (234

Its horizontal (dominant) component can be approximated from Eq. (2.1.14), using the
fact that the integrand is an even function of ¢:

! 3/2 2 -2
(w ¥) \/7 1 (1 +° wz)s/z > d (1 + 2 wQ) )
47360 ;?R (142 w2) ( 2¢v3/R /0 t coswt Lt

2c¢v3/R
1
2 (3% /4> o0 cos wt 3cy3/R
= ;—(1+ 2w2)2 i dt ; 5 Where wy 2(11 2¢2)3/2
vy -1 9 Y
(3% /4) +t>
97 1 1

128 (11 12 92) @ = (1 (3/4) [l o) OVl

(2.3.5)
Note that this is purely real. wy, is a kind of “generalized critical frequency” such that
Wy = We.

L .
radiation cone aperture
arc magnet Z—]
«
x 1 N
773 vy 8 %I observer
electron ! 'R L
obit V1 1 | Y
Y Y

Figure 2.3.1: Figure used to estimate spectral content of synchrotron

radiation from arc magnets. The angle 1/ is greatly exaggerated to make
the figure legible.

To obtain the photon energy spectrum we must calculate the power spectrum of the

radiation. This can be obtained by expressing E,(t) in terms of E,(w) by Fourier inversion

B, (1) = \/%_ﬂ /_ Y B (@) et dw (2.3.6)
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and then substituting this into Eq. (2.2.3) to give

QWM()C / dQ/ / (w') dwdw' /_Z emi(w )t gy
MOC / o / E ( w) duw .

In the last line the identity

(2.3.7)

/ e dt = 2m 6 (a) | (2.3.8)

—00

has been used. The integrand of Eq. (2.3.7) can be interpreted as the energy per unit

frequency range and per unit solid angle corresponding to one revolution:

Uy R 2 _~(3/2)
~ 1+ (3/4 wlwy >0. (239
dQdw  4megR R (1+42 ¢2)4 ( +(3/4) w/w¢) e , W > ( )

One factor of 2 has entered because w is here restricted to be positive. The (most readily

measurable) quantity dUp/dw, is obtained by integrating over d<:

W)  ger® [ (3w51/4) (1+ (3/4) w/wy)
do Qeng/ (1 +~22)?

Because wy, is itself a function of 1) this is a rather complicated integral. It can be expanded

e~ By gy (2.3.10)

in series or approximated for high and low values of w but it may as well just be evaluated
numerically. Unfortunately this makes it little more convenient than the “exact” expression
that we have been avoiding.

It will turn out that a more nearly exact formula is somewhat simpler than the approx-
imate formula just derived. Returning to Eq. (2.3.4), and substituting from Eq. (2.1.6) we

obtain

1 _
(“,; W) _ / 1 df “vije dt . (2.3.11)
4megcR V27T 1_7?"% dt 1_7?"% ret.

Changing the variable of integration from ¢ to ¢, (using Eqgs. (2.1.4) and (2.1.12)) yields

2 _
(c; ) _ / ““tr 2 w T 32) d [ _=vi/e dt, . (2.3.12)
dmegcR V2T dty \ 1 - R - %

Since we are now treating t, as the parameter describing the electron’s orbit (as in

Egs. (2.2.7)) the retarded time designation has been removed and d/dt has been replaced
by d/dt,.
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We can now take advantage of the form of the integrand to integrate by parts (using

Eq. (2.1.4)):

— . 1 wz 62t2
E(wvw) w /OO ez"Jt’“(W+T+6Rg -V
27 J—oo

00 iwtr(i+¢—2+c2t7“) t t
— \/%/ e 2?2 6R? (— sin (U—Rr> X + 1) cos (U_Rr> y) dt,
—00

iwtr(%+¢;+c2};§) cty . .
2y 6 ——Xx+y | dt, .

q
4dmegcR

w 00

A E /_ . e

(2.3.13)

(Compare Eq. (14.79) of Jackson.) Here the approximations sinty ~ ¢ and sin®¢ = 0

require no comment, but we have also used sin(vt,/R) — ct,/R and cos(vt,/R) — 1. What

makes this valid is that the exponential factor oscillates so rapidly that contributions to
the integral are negligible outside the region of validity of these approximations.

Since the z-integrand is an odd function of #,, Ea;(w) is pure real. But the y-integrand

is an even function of ¢,, so Ey(w) is pure imaginary. As a result x and y components are

90° out of phase. Should their amplitudes be equal, this would be circular polarization.

In general it is elliptical polarization, with the major and minor axes erect.

The exact evaluation of the integrals in Eq. (2.3.13) bring in the feared Airy functions.

Problem. It has been “argued” previously that simply dropping the retardation term
proportional to t% introduces only a small error. Investigate this by evaluating the integrals
in BEq. (2.3.13) with the term ¢%t2/(6R?) dropped. Perform numerical comparisons with

exact values given, for example, by Hoffmann.

One can calculate the energy content of  and y fields independently. Having again cal-
culated the Fourier transform E(w) (now in the so-called “exact” treatment) we substitute

it into a generalized form of Eq. (2.3.7)

R2 0 ~ -~ ~
Uy = Un+ Uy = / a0 / By () By () + By () By ()] do . (23.14)
0 —0o0
We know that the radiation comes in the form of photons of energy u = hw. Desig-
nating the number of photons in the energy range u to u + du as n,(u)du we have

C1dUy 1 dU;

= - = — . 2.3.15
. (u) u du uh dw ( )



44 Synchrotron Radiation: Wave Properties

2.4. Radiation From Multiple Charges

Actual electron rings contain (a very large number) N of electrons and the observed ra-
diation is some superposition of the radiation from each electron. One can idealize the
N electrons as being regularly arrayed around the ring or as forming one “superelectron”
of charge Ne. In the former case one obtains essentially a steady ring of current which,
from magnetostatics, we know emits no radiation. In the latter case the formulas up to
this point need only be modified by the replacement e — Ne with the consequence that
Uy — N2Uy. With N being a number of order 102, we are therefore uncertain, so far, by
24 orders of magnitude as to how much radiation actually occurs.

It was Schwinger who first gave what is now considered to be a correct treatment of
this aspect of the radiation. To a first approximation the electrons radiate incoherently
and the total radiation is obtained by multiplying all formulas to this point by N Al During
the 1950’s this quesion was somewhat contraversial and, if I am not mistaken, Schwinger’s
calculation was first confirmed experimentally by Corson at Cornell’s first electron syn-
chrotron. Corson’s experiment consisted of measuring the energy loss of electrons by
measuring the rate at which they “spiral in” because the RF accelerating field is turned
off.

Suppose that the position of the j'th (of N) particles is positioned in the ring such
that the center of its radiation pulse arrives at P at time At;. The total energy can
be calculated using Eq. (2.3.7), but with E, summed over all particles. (We work only

with the z-component, but the y-component calculation is the same.) Since the Fourier

transform of the j field acquires a factor et | the energy radiated by all particles is given
by
N .
/ 40 / By () By (—w) dw 3 ei(8t-20) (2.4.1)
" hoc k=1

Since there are N2 terms in the final factor, its value can, in principle, range over the vast

previously mentioned) range from 0 to N2. Since this factor can be written
y g

N
Yo e(atimat) = v o § e (alman) | (2.4.2)
Jk=1 J#k

€ same time Scnwinger calculate € suppression ol extremely long wavelern S aue to e con-
At th time Schwinger calculated th ion of extremely long wavelengths due to th
ductive vacuum chamber walls.
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we have
R2 co _ N )
Uy = NUy+ 2= [ a0 / By () By (—w) dw 3 e(8t-24)

2 (2.4.3)

R o al
=NUy+ — dQ/ B2 (w) dwd) " cosw (Atj — Aty) .
0

C
Ko ik

If the arrival times At; are randomly distributed then the final factor averages to zero. The

situation is not quite this simple though because (a) the particles are, in fact, bunched in

time and (b) the factor 4 Zé\;k cos w(Atj—Aty,) has r.m.s. fluctuation 4/N(N — 1)/2 V cos? =

2N. Integration over w causes the latter fluctuations to cancel, but the beam bunching
cannot be neglected at low frequency. However “low” here implies photon wavelengths
comparable with the electron bunch length. For purposes of high energy synchrotron light
sources (with bunch lengths of order 1 ¢m) such photons are in the far infrared and can

be regarded as negligible.



Chapter 3.
The Simplest Possible Storage Ring

3.1. Motivation

According to Eq. (1.71), the brilliance at critical wavelength A. of the radiation from a
storage ring, for aperture AD at distance L, is given (approximately) by

I AD 10~*
B=-0.0662y — —— . 3.1.1
e " 2w L erxey ( )

The emittance factors in the denominator quantify the influence on the brilliance of the
spatial and angular distributions of the circulating electrons.

The purpose of this chapter will be to calculate these factors, as well as other features
of the distributions of circulating electrons. As mentioned before, our approach is to
“rewrite history” by perpetrating the fiction that all developments in storage rings were
motivated by the desire to improve their performance as synchrotron radiation sources.
From Eq. (3.1.1) one sees that this amounts to reducing the emittance factors. As it
happens, accelerator development has, in fact, actually been driven largely by the desire
to reduce these emittances. One reason for this has been to reduce magnet costs by
reducing the need for transverse aperture. Another reason for reducing emittances has
been to reduce beam spot sizes and hence increase luminosity in colliding beam operation.
For these reasons, the evolution in storage ring design to be described here is more or less
consistent with the true chronology.

Implicit in Eq. (3.1.1) is the assumption that the spread of photon emission angles is
negligible. For early accelerators this assumption was abundantly true. For later generation
synchrotron light sources, designed for ultra-low emittances, it will be necessary to take
better account of the radiation patterns on the brilliance.

The sequence of accelerators to be descibed consists of: uniform field (cyclotron ge-
ometry), weak focusing, combined function, separated function, and special purpose, low
emittance dedicated light sources. There are two major sub-topics. First one must define
and calculate parameters such as “tunes” (), and @), and beta-functions /3, and 3,. The

latter have already been introduced in chapter 1, where they were used to characterize

— 46 —
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beam distributions. The second major sub-topic is to determine the actual values of emit-
tances €; and €;,. On the one hand, according to Eq. (3.1.1), €, and ¢, determine the
brilliance but, on the other hand, it turns out that they are themselves determined by the

properties of the synchrotron radiation.

To make a long story short, all emittances are determined by a competition between
damping and stochastic exitation, both of which are due to the radiation. One strongly
damping effect can be inferred from Eq. (2.2.6), which can be modified slightly to de-
scribe the energy radiated per turn by a particle whose momentum (or energy) is offset by

fractional amount ¢:

Cy (E(1+94))"
R(1+90)

Uy (6) = (3.1.2)

This formula shows that a particle whose energy is temporarily slightly above nominal
will radiate somewhat more than the nominal amount of energy. This will pull its energy
closer to the nominal energy; this constitutes “damping”. But there is a countervailing
effect. The energy is radiated in the form of photons of random energy and at random rate.
These “quantum fluctuations” introduce “stochasticity” into the motion which increases
the spread of energies. Competition between these effects leads to an equilibrium energy
spread and (as it turns out) bunch length. In this, as other areas of physics, competitions

such as this are subject to “fluctuation/dissipation theorems”

What has been outlined in this paragraph is the “longitudinal equilibrium”, but we

will also have to calculate the horizontal and vertical equilibria.

3.2. The Uniform Field Ring

The leading requirement of a (more or less) circular accelerator is that the particles be
bent through 360°, say in a circle of radius R (£ 100m.) Assume a uniform magnetic
field By, directed along the (vertical) y-axis. The non-relativistic equation governing the

motion is

mvz

= = evBy, or, for v~ c, % =ecBy . (3.2.1)
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The latter form (which is relativistically valid) will be all that is used in what follows. It
can be expressed in alternative forms:

_pefe (e 5x10°V
"~ cR ~ 2x108m/s x 102m

p

= = 0.16 Tesla = 1.6 kGauss.

(3.2.2)

=evxB, or By

A particle with pc/e given exactly by ¢ByR and exactly on the center line of the vacuum
chamber, will be called the “central” or “reference” particle, and will be said to follow the

“reference trajectory”.

3.3. Horizontal Deviation

In practice the particles in an accelerator follow trajectories that deviate from the reference
trajectory, as shown, for example, in Fig. 3.3.1. Simple geometry shows that a particle
deviating by angle Az’ at point O will again pass through O after one revolution. Letting
the radial offset x be defined by » = R + x, one sees from the figure that the transverse

displacement is given (at least approximately) by
7 (s) = RAZ' sin% . (3.3.1)

Since the point O could have been taken anywhere in the ring this dependence could
have been any linear combination of sin(s/R) and cos(s/R), and these are the only forms
satisfying the linearized, paraxial focusing equation (1.2.1). Based on Eq. (3.3.1), this

equation, known as the “betatron equation”, must specialize to

d*z 1

By construction this is satisfied by x(s) as given in Eq. (3.3.1). This shows there is an
effective horizontal focusing force caused by the geometry of circular motion. We will find
eventually that this is a very weak focusing. This is just as well, since in the first packet of
notes it was stated that the focusing associated with the bending of a charged particle in
a magnet is negligible. Here is where we repairing this neglect to improve the treatment
by accounting for this weak focusing effect.

One defines the “tune” (), to be the number of betatron oscillations per particle

revolution. Since, the motion exhibited in Fig. 3.3.1 has exactly one complete betatron
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Figure 3.3.1: Orbit of particle with non-vanishing horizontal slope offset
Ax’ at the origin.

oscillation per revolution, (), = 1. Another way of expressing the motion is the so-called

pseudoharmonic description of Egs. (1.7.1) and (1.7.2):

z (8) = a costhy (s) (3.3.3)
where \ /
e (5) = /0 6:155,), or df; - é : (3.3.4)
For these equations to be consistent with Eq. (3.3.1) requires
¥y (8) = %, and hence [, =R. (3.3.5)
Finally, the tune is given by
Qe = Vols =2mR) _ 1. (3.3.6)

27
This confirms what is obvious from the figure. We will find eventually that (), = 1 is an
undesirable tune, both because it is an integer and because it is too small, and that 5, = R
is an undesirably large g-function, but they are what we have to work with for the time

being.
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3.4. Vertical Deviation

Unfortunately, the particle motion just described will be unstable vertically, because any

nonvanishing component of vertical velocity will cause a particle to drift inexorably in the

vertical (y) direction until it strikes a magnet pole and is lost. To overcome this problem

one can shape the magnet poles as shown in Fig. 3.4.1.

Figure 3.4.1: Magnet poles shaped to produce a horizontal component
of magnet field B, to prevent particles from drifting vertically. This is a
“weak focusing” magnet. Since there are never any particles in the left two
thirds of the field region shown, the magnetic field need not, in fact, be

present there.

The field nonuniformity is conventionally parameterized by introducing “field index”

n according to which
BO n

(3.4.1)

In free space, according to Maxwell’s equations, one has V x B = 0. We will ignore the

gentle curvature of the magnet as s varies, in order to be able to treat the magnetic field

as if it depends only on z and y. It then follows that 0B,/0x = 0B, /0y, which enables

us to approximate the spatial dependence of vertical field component:

B, =By (1—%:1;) .

Now the force equation (3.2.2) becomes

Using ds = cdt and p, = y'p, this yields, for the vertical equation of motion,

" Bycn n

ST BT TR

(3.4.2)

(3.4.3)

(3.4.4)
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Provided the field index satisfies n > 0, this exhibits the vertical restoring force that the

magnet was designed to provide.

3.5. Simultaneous Horizontal and Vertical Stability

Providing vertical stability has not come for free. With the field modified as shown in
Fig. 3.4.1 it is clear that a particle for which x > 0 finds itself in a somewhat reduced
magnetic field, which is the opposite of what would bend it back toward the reference
orbit; in other words, some horizontal defocusing has been introduced. The effect of this

force can described by modifying Eq. (3.3.2), using the z-component of Eq. (3.4.3):

1—n

Provided the field index satisfies 1 —n > 0, there is net horizontal focusing. Since it is

necessary for both horizontal and vertical motion to be stable, we must have
O<n<l. (3.5.2)

We can now extract tunes and S-functions for both planes, starting from the betatron

phases required to satisfy Egs. (3.4.4) and (3.5.1):

lbx:\/I};QnS, wy:,/%s. (3.5.3)

Again employing the second of Eqgs. (3.3.3), we therefore have

Br = ) By = - (3.5.4)

Since both |n| and |1 — n| are less than 1, both S-functions are greater that R. Finally,
proceeding as in Eq. (3.3.6),

Q:=V1—-n, Qy=+n, andhence Q;+Q=1. (3.5.5)

This final condition makes it clear that the focusing in both planes must be relatively weak.
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3.6. Dispersion

Just as no particle lies precisely on the reference orbit, no particle has precisely the nominal
momentum. The fractional momentum offset 6 = Ap/p was defined in Eq. (1.1.1). A
possible orbit for such a particle is a circle uniformly outside the reference circle of radius
R, with radius given by R+ nd. This is the defining relation for the “dispersion function”
n(s), which, in general, depends on s. But in all cases treated so far, n is independent of
S.

For a uniform magnetic field, applying Eq. (3.2.1) to this “off-momentum” orbit yields

_pc (1+96) B
R+nd= By or n=R. (3.6.1)

For a weak focusing magnet, the same equation can be applied, but it is necessary to take
account of the reduced magnet field strength for Ax > 0:

Az pc(1+9)
R<1+R>_ec30(1—n%)' (3.6.2)

Cross-multiplying the factor (1 — nAz/R), Taylor expanding both sides of this equation,
setting Az = nd, and equating first order terms yields, for the dispersion of a weak focusing

ring,

_ B B
1o T

(The final relation notes, in passing, a standard “rule of thumb” relation between dispersion

(3.6.3)

and tune, which happens to be exact for the weak focusing lattice.) By modern standards
this is a gigantic dispersion, but it was what earlier accelerator users had to deal with.
For CESR, with R ~ 100 m, if one had to deal with n = 0.5 the dispersion would be
n = 200m. Then, for an off-momentum value of 10™3 (which is typical) the off-momentum
orbit would be displaced by 200 x 1073 = 20cm. Being roughly twice the full width of

vacuum chamber, this would clearly be unacceptable.
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3.7. Momentum Compaction

Because of dispersion, the orbit circumference C(p) depends on p. A parameter that enters
discussion of off-momentum orbits, and can be quite confusing, is the so-called “momentum

compaction”, which is obtained from C(p) using the relation,

oL 9 (3.7.1)
C(p) dp

« is equal to the fractional increase in circumference AC/C divided by the fractional
increase in momentum § = Ap/p. This quantity is important for analysing longitudinal
stability, which depends on the time of arrival of the electron at the RF accelerating cavity.
For an off-momentum particle, this time depends on its excess time of flight relative to
the reference particle. For non-relativistic particles the velocity deficit, relative to the
reference velocity, contributes to this deficit, but for electrons (which are relativistic), the

entire deficit is due to the excess circumference, which is what a quantifies;
AC

- as . (3.7.2)

For a uniform field magnet, with R ~ p one obtains immediately from Eq. (3.7.1) that
a = 1, and the name “momentum compaction” derives from this. That is, momentum
compaction less than 1 implies that the circumference increases less rapidly than linearly
with p, so the transverse density of trajectories is “compactified” relative to what would be
true in a uniform magnetic field. For a weak focusing magnet, copying n from Eq. (3.6.3),

_ o d p—po) 1 a0 1
a—ZWde <R+77 . >— = . (3.7.3)

It might be thought that the value of o would always be of order 1, but modern lattices
are designed to have o << 1. In fact, the final equation of Eq. (3.7.3), which was just
listed as a comment in passing, continues to be true for high tune lattices having @, >> 1.
Sometimes one even contemplates lattices having o = 0 in order to obtain very short bunch

lengths.
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3.8. Chromaticity

Since the focusing strength of typical magnetic elements varies inversely with momen-
tum, the tunes tend to become smaller as the momentum increases. This is known as

“chromaticity”. One defines “chromaticities”:

Qs

dQ
r_ 0y
@ dé’ '

Q= —5 (3.8.1)

If nothing is done both chromaticities are negative, but usually sextupoles are included
in the lattice to compensate the chromticities to zero or slightly positive values. In the
formulas given so far for a weak focusing magnet, no dependence of n has been exhibited,
but one sees from the inverse R dependence indicated by Eq. (3.4.1), that n(J) ~ n(1 —9).

Hence we have
,  —dn/dd n , vn (3.8.2)

= An Ao YT




Chapter 4.

The Influence Of Synchrotron Radiation On a Storage
Ring

4.1. Introduction

It is synchrotron radiation that distinguishes electron storage rings from proton storage
rings. The large difference in mass of these particles causes radiation to be dominant for
electrons and negligible for protons. The main radiative result is the simple frittering
away of energy, and the strong dependence on energy of this energy loss sets a practical
limit to the achievable energy of an electron ring. The eTe™ ring LEP at CERN in Geneva,
Switzerland has achieved an energy of about 100 GeV, but nothing beyond that is currently
judged to be economically feasible.

In the context of this course, to provide local flavor, formulas will be specialized to
CESR, and analyzed for possible modifications that could lead to reduced emittance, short-
ened bunch length, etc.

For existing electron accelerators, once paying the power bill needed to replenish radi-
ated energy has been accepted and discounted, the remaining effects are a mixed blessing.
The steady loss of energy has the desirable effect of damping betatron oscillations, which
leads to a beneficial emittance reduction. (At the highest energies presently contemplated
for protons, this benefit will be just beginning to be useful.) Unfortunately this radiation
is emitted in the form of photons, at a random rate, and with random energies. This ran-
domness, also known as “quantum fluctuation”, causes the stochastic excitation of both
transverse and longitudinal oscillations. There is a competition between this excitation
mechanism and the previously mentioned damping. This leads to an eventual equilibrium
in which all beam dimensions are determined, independent of prehistory. Beams smaller
(larger) than this damp (are excited) to these dimensions in a time which is typically of the
order of milliseconds. Furthermore, except for nonlinear effects, all beam distributions be-
come Gaussian. Analysis of these effects is an interesting application of stochastic physics,

and makes up the main content of this section.
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Many of the results to be discussed were first derived by Sands' and are described in
his article referred to previously. In writing this chapter, for the sake of continuity, all
results have been re-derived but, if questions arise, returning to Sands’s article may be a
useful step. As far as I know, there are no essential differences from Sands of formulas

presented here.

4.2. Statistical Properties of Synchrotron Radiation

For the highly relativistic situation to be analysed in this section it will not be necessary

to distinguish between energy F and momentum P (or Pc if you insist).

There is a central energy Fy which, in a large machine like LEP, varies noticeably
around the ring because of radiation. For typical synchrotron light sources this effect is
negligible. Nevertheless, any particular electron energy E = Pc will deviate from the
nominal energy FEy(s). The energy of a particular emitted photon will be denoted by
u, the total energy radiated in one turn by Uy and the revolution period by Ty = 1/ fp.
Stochasticity results because of the randomness of u, and Uy is also, in principle, a random
variable, but the number of photons emitted per revolution is so great that it will be

legitimate to treat Uy as non-probablistic.

The radius of curvature R and magnetic field B are related by

R= Ez—l/; (4.2.1)

In what follows, B and R will be treated as necessarily positive quantities. (Reverse
bends are rare except in wigglers, where they are essential and where radiation effects are
intentionally important. In those cases (straightforward) alterations must be applied to all
formulas to follow.) In the same spirit it is common to make an “isomagnetic” assumption,
probably introduced by Sands; the magnetic field, wherever it is non-vanishing, has the
same value B. This causes the gross orbit to be a perfect circle except for interpolated
straight line segments. For now we will be even more extreme, ignoring even the straight
sections. Since these assumptions is never entirely valid, it will be necessary to generalize
the formulas later to analyse practical accelerators. Remedying these oversimplifications

will test our understanding of the statistics of the phenomenon under study.
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The steps to be taken in analyzing emittance growth due to photon radiation in a
certain sector of the accelerator are: first, calculate the total energy radiated in the sector;
second, knowing the mean energy of radiated photons, calculate the number of photons
radiated; third, calculate the effect of a single photon emission on the betatron amplitude
of a particle in the accelerator; and fourth, using the fact that emission times are random,
find the accumulated effect of these excitations. To find the final equilibrium it remains
necessary to analyze the damping effect accompanying the replenishment of the radiated
energy.

The total energy radiated for all photon energies from a single electron during time 7'
is given 273 by

626

Up = P,T = 5 —C, E*B*T = iuj, (4.2.2)
where C, = 0.885 x 10~*m/GeV? | the total number of photons emitted is N7, and
their energies are uj,j = 1,..., Ny. The instantaneous radiated power P, is made up of
forward-traveling photons; for all present purposes they will be taken as emitted exactly
in the forward direction.

In a practical accelerator the field B varies with arc length coordinate s and the nominal

energy radiated in one turn Uéad can be expressed as an integral along the central orbit
022
Urad = 5 —C, E? f B2 (s)ds. (4.2.3)
T

If B is constant, the total energy Up radiated in a complete revolution is

E4
vl = o, — 4.2.4
Y R’ ( )

which is as simple as it is because it is actually the defining equation for constant C,. It
is necessary to be careful when using this equation since, conventionally, C., is given, as
above, in other than M.K.S. units. A “typical” or “critical” photon energy parameter u,

is defined by]L

3

B
_ —hC’)/?) c

e (4.2.5)

 Note that the “critical energy” u., defined in Eq. (4.2.5), corresponds to the “critical frequency” w,
defined in Eq. (2.3.2).
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Beware that there is not necessarily universal agreement on the definition of u., which is
neither the maximum nor the mean nor any other statistical parameter. (From Fig. 4.2.2,
to be introduced shortly, it looks to be in a vicinity such that about half the energy is
radiated below it and half above.) To serve as an example, a consistent set of numerical

values for the physical parameters and for u,. and other derived quantities are listed in

Table 4.2.1.

When the energy w is expressed in units of u. by & = u/u. the probability distribution
of photon energies ng¢(§) is a universal function. Because the number of photons in the
energy range du at u is n,(u)du = ned€, one has n,(u) = negdf/du = n¢(u/uc)/u.. When
N photons are emitted altogether, the number in the range du at u is N'ny(u)du. These

definitions imply that n, and n¢ are normalized according to

/000 o (o) di” = /Ooo ng (¢) d¢’ = 1. (4.2.6)

An analytic expression for ng(£) is given in Sands and in Landau and Lifshitz, in terms
of a function called the “MacDonald” function which is itself expressed in terms of Bessel
functions. Those formulas will not be replicated here, but an approximation will be given
in the problems and in Fig. 4.2.1 and Fig. 4.2.2. All subsequent results will be expressed in
term of moments of n¢(£); Sands states these average energy and average energy-squared

quantities to be -
<u >7:/ u'ny, (u') du’ = 0.3079u,,
0 (4.2.7)
< u? >7:/0 u'znu (u') du’ = 0.4074u2.
Here the symbol <>, implies averaging over photon energies, as contrasted, say, with
averaging over lattice elements, or over particle turns, or betatron phase. (The v subscript
is unconnected with the relativistic factor «.) This radiation is simpler to treat than,
say, bremstrahlung, in one respect—there is no “infrared divergence” causing the number
spectrum to be divergent near zero energy. This allows the number of photons emitted
to remain finite, which allows < u >, to be defined. Apart from normalization (4.2.7)

lists the only important parameters (moments) of the emission distribution. For example,

Tt s obviously unphysical for the upper limit to be set to oo, but for present purposes all integrands
will be sufficiently convergent that it does not matter.



The Influence Of Synchrotron Radiation On a Storage Ring

Table 4.2.1: Parameters describing synchrotron radiation in a hypothet-

ical pure FODO lattices resembling the CESR storage ring.

Quantity Symbol Formula or Value Units
reference
rest energy mc? 0.511 MeV
relativistic factor Y0 10
central energy Ey yomc? 5.11 GeV
magnetic field 0.1939 T
radius of curvature (4.2.1) 87.9 m
magnet, length I 6.57 m
one magnet bend angle Aty Ig/R 0.0747
time in one magnet T Ip/c 21.9 ns
energy radiated per magnet Ur, (4.2.2) 8.166 keV
critical energy Ue (4.2.5) 3.367 keV
mean energy < U >y (4.2.7) 1.037 keV
mean squared energy < u? > (4.2.7) 4.619 keV?2
energy radiated per turn Ugad 27U, /A0, 0.687 MeV
photons per turn U/ < u >, 662
number of bend half-cells n 84
half-cell length / (4.9.2) 8.44 m
phase advance per cell 2¢ (4.9.2) 70 deg.
“curly-H” H (4.9.4) 0.250 m
emittance €x (4.9.5) 0.1089 pm
maximum [, in arcs B;,; 45 m
oy at By Ga 2.22 mm
fractional energy spread o) (4.7.11) 0.47 x1073
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except for fluctuations, the total number of photons radiated, N, is related to the total
energy radiated Ur by
Ur

Np = :
<u >y

(4.2.8)
If, My, the total number of photons of photons radiated per revolution, is divided by ~q,
the result is independent of E and B, leading to the simple formula

Ny — U ecCLE’B
<u>y  0.3079vu.

= 0.0662. (4.2.9)

This can be the basis for a curious bit of trivia: every electron in every present or planned
symmetric B-factory—just a cute way of saying that v = 10*—radiates 662 photons, plus
or minus, every turn. Half, 331, are radiated in each half, and the same would be true
if the magnets in one half were replaced by bend fields one tenth as long, ten times as
strong. Redistributing the bends to make the whole ring homogeneous would not make a
difference. It seems then that for any guide field whatsoever (with no reverse bends, as
for example in a wiggler) there will be 662 photons. Having “established” this remarkable
result, one must acknowledge that it has little value—it is the energy radiated, not the
number of photons, by which the radiation does its dirty work.

From the approximate distributions described in the problems it will be seen that the
number of photons is dominated by low energies and their r.m.s. energy is dominated by

high energies. This renders correct calculation somewhat tricky.

Problem 4..1. An approximation to ng (developed for these notes, inaccurate at the

+20% level, and not intended for accurate calculation) is

0.413¢-2/3 if 0 < €&<0.2
ne (€) =< (0.308/¢) (1 —e %) et if0.2<¢< LT (4.2.10)
0.239¢71/2¢=¢ if 1.7 < € < .

Check the normalization condition Eq. (4.2.6) for this approximate form. These functions
are plotted in Fig. 4.2.1. The distributions multiplied by £/0.308 to convert to a normal-
ized distribution function for radiated energy are plotted in Fig. 4.2.2. (By Eq. (4.2.7)
Jo~ € ne(¢)de’ = 0.308 is the normalizing factor). The low-¢ and high-{ approximations
given as the first and third forms in Eq. (4.2.10) are analytically correct limiting forms

given by Sands for the energy spectrum in those limits. From the figure they can be seen
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individually to be bad approximations everywhere except in their legitimate regions of
validity. The level of inaccuracy of the approximation can be estimated by the failure
of normalization of the patched together form in this figure. It can also be judged by
comparing with the few points crudely read from the intentionally low resolution “exact”

graph given by Sands and plotted in the same figure.

Problem 4..2. Extending the central approximation of the previous problem over the full
range from zero to infinity (though not a very good approximation it is at least adequately
convergent in both limits) adjust the normalization to satisfy Eq. (4.2.6) and calculate the
moments < u >, and < u? >~. With units as always a likely source of blunders, a useful
numerical check is on the dimensionless ratio < u? >,/ <u >,2y for which the correct value

is 4.297. Naturally your value will disagree because the distribution is somewhat wrong.

Problem 4..3. Find a superior interpolating function, and forward it to me, so I can
improve the first problem. At some stage, to get accurate results, one is forced to use the

correct analytic MacDonald function discussed by Jackson and by Landau and Lifshitz.

Because individual photons carry energy u, the radiated power P,,, expressed as a
distribution of energy such that P,,(u)du is the time rate of emission of energy in the
range du at u is given by

Py (u) = U (u) . (4.2.11)

Except for a normalizing factor, this is the integrand of Eq. (4.2.7) for < u >,; it is plotted
in Fig. 4.2.2.

Fluctuations in photon emission are central to electron dynamics in the accelerator.
Since the main source of fluctuation is the random-in-time emission of photons, these
quantum fluctuations would lead to emittance growth even if every photon carried the
same energy. In that (unrealistic) case every photon emitted would have energy < u >,

and the r.m.s. energy would satisfy < u? >y=< u >,2y. In fact, the growth mechanism

2
is stronger by a factor equal to the true ratio which is <<1;>>2” = 4.297. This reflects the
Y
fact that the emittance growth due to a single emission is proportional to u? and that a
relatively small number of higher energy photons can make a relatively large contribution

to the average square.
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SYNCHROTRON RADIATION NUMBER DISTRIBUTION
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Figure 4.2.1: Approximating functions for the normalized probability
distribution function n¢ (&) of number of photons as a function of normalized
photon energy. The functions, indicated with the key, are those given in
Problem 4..1. The upper curve valid only at low energy, is connected by
the intermediate curve to the lower curve which is valid only at high energy.

The total energy Uy radiated during time T' can be obtained from Eq. (4.2.2) and from
that an almost unambiguous total number of photons Ny = Urp/ < u >, can be obtained.
To obtain this formula it has been assumed that individual emissions are uncorrelated and
that M and Ur are not subject to fluctuations. For times too short (say comparible to

the mean time between emissions) this would not be valid, but it will be applied only for

times long enough to assure small fractional deviation of N7; i.e. /N7 >> 1.

The emittance growth rate due to radiation will turn out to be proportional to the

average sum of squares of photon energies for the A photons with total energy Ur radiated

during time 7. From formulas derived so far this is given by

Nt

U
<S> =Np<u?>,= = L <u?>,=1.323uUr.

u
i=1 7

(4.2.12)
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SYNCHROTRON RADIATION ENERGY DISTRIBUTION

T *1 . x**( -0. 666666)~~'7'~—
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Figure 4.2.2: Approximating functions for energy radiated per unit en-
ergy (£/0.308)n¢ (&), where the numerical value 0.308 comes from Eq. (4.2.7),
as a function of normalized energy &. The functions, indicated with the key,
correspond to the functions given in Problem 4..1. Except for normalization
this is also the radiated energy distribution, Py, (u).

The important dependencies of this simple result are that (by Eq. (4.2.2)) Ur is propor-
tional to E?B? and that (by Eq. (4.2.5)) u, is proportional to v3B/E. The dependence
on B forces regions of different magnetic fields to be treated independently, i.e. integrated

over. The dependence on E is important in determining the final beam equilibrium.
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4.3. The Damping Rate Sum Rule: Robinson’s Theorem

The phase space coordinates of an individual particle at location s in the ring are given
by (z, f,y,9,2,h), where f =z', g = ¢/, and h = § have been introduced to suppress the
primes. In passing through a differential longitudinal path element ds, evolution of these

components is described by a transfer matrix:

14+ dX; dXo dX3 dXy dX5 dXsg
dFy 14 dFs dFs dFy dFs dFg
o . dYr dYs 1+dYs dYy dYs dYs
X(ds)=1+dX =1 40 4@,  dG; 1+dGy dGs  dG
dlq dLo dLs dLy 1+ dLs dLg

dHy dHo dH3 dH}y dH> 1+ dHg

(4.3.1)
The differential “d” symbols indicate elements that are first order in ds. For example, in
pure drift regions dXo = dYy; = ds. Eventually ds will be made arbitrarily small. The
determinant |X(ds)| is not necessarily equal to 1 since the matrix represents radiation
effects as well as the effects of bending and accelerating elements.

Transfer through a sequence of intervals dsi, dss, ..., is represented by the matrix
X =[] X(dsi) - (4.3.2)
i
The determinant of X can be organized into ascending powers of the ds;:

|X| =1+ Z (Xm,i + dFQ,i + dYg,i + dG47i + dL57i + dHﬁ,i) +.... (4.3.3)

i
Note that the off-diagonal matrix elements do not enter in lowest order.

For “Hamiltonian” elements such as magnets, drifts, and RF cavities, it is known
that the determinant det |X(ds)| = 1 and that the six eigenvalues of X(ds) come in three
complex conjugate pairs lying on the unit circle. Supposing these eigenvalues to have been
determined for the interval ds, and generalizing slightly by permitting their magnitudes to

deviate slightly from 1, we define them as!

Ay (ds) = e~ doatidBe Ay (ds) = e~dowEidBy N (ds) = e dsTidBs (4.3.4)

t Labeling the eigenvalues by z, y, and s suggests the theory is valid only if coupling is absent, but that
is not the case. z, s, and s, are simply labels for the three local eigenvectors. Of course the a’s and (’s
introduced here have nothing to do with the lattice Twiss functions.
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Since the determinant of a matrix is equal to the product of the eigenvalues,
X (ds) | = ( o—daw+idBe e—d%—id&) ( o—day+idBy e—day—idﬂy> ( o—das+idBs e—das—idﬂs>
~ 1 -2 (dag + day +daz)

(4.3.5)
where higher order terms have again been dropped. Letting oy = [ dovg, ay = [ dey,, and
as = [ dag, all assumed to be small compared to 1, and proceeding to the ds = 0 limit,
we obtain

1X|=1-2(az +ay + o) . (4.3.6)
The determinant X given in Eq. (4.3.6) can also be approximated directly from Eq. (4.3.1),
keeping only terms of first order in ds, and that is how we will evaluate the damping decre-
ments «;. If a term in the expansion of the determinant contains one off-diagonal element
then it must contain at least one other, making it at least second order in ds. This lim-
its our task to calculating the on-diagonal perturbations. In evaluating the on-diagonal
elements dX1,dFy, ..., knowing that magnetic elements and drifts leave the value of the
determinant unaltered (at 1), we need only include energy altering effects.
Within the path length ds under discussion there is the possibility of energy change

due to radiation or due to RF cavities, or other longitudinal electric fields,
dE = —dU™! — qu™t.

The rationale for the sign of dU™d (previously defined as a positive quantity) is that it
should lead to a reduction in E. The rationale for the sign of dU™ is that this quantity is
to be regarded as a potential energy, such that moving to lower potential increases E.

We now evaluate the six on-diagonal perturbations one-by-one. It will turn out that
dX1, dY3 and dLs vanish (to first order in ds) but to see this it is useful to first understand
what contributes to dFy, dG4, and dHg.

If the particle energy increases from E to E —dU™ by virtue of potential energy change
dU™ (a negative quantity), its momentum will change as shown in Fig. 4.3.1. Though the
particle’s transverse momentum is unchanged, its longitudinal momentum increases by
factor 1 — dU™ /E, and this has the effect 2’ — 2/(1 + dU™/E); i.e. a slight reduction in

slope. The vertical slope ¢ is reduced by the same factor. This means that

1 rf
B=ci=1+ Y

—_— 4.3.
B 0 ds , (4.3.7)
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Figure 4.3.1: Damping of transverse amplitude accompanying longitu-
dinal acceleration.

where it has been adequate to replace the slightly-variable quantity £ by the central value
Ey. These changes of slope also alter = and y, but the changes are proportional to ds?.
For this reason dX; = dY; = 0.

The remaining term to be evaluated, dHg, accounts for change in longitudinal mo-
mentum (which at high energy is, except for units, equivalent to energy). Superficially
it might seem one should account for the change EE — E — dU™ due to RF acceleration,
but since the reference orbit is also accelerated, Ey — Ey — dU™, the ratio h ~ E /Ey is
unaffected by RF acceleration. This can be repeated for emphasis: though the energy of
the reference orbit suffers a discontinuous change at an RF cavity, any particular particle
suffers the same change, causing £ — Fy to be continuous. This may seem unnatural, and
one could imagine a consistent perturbative formalism that would reckon the RF acceler-
ation as perturbative, but that is not the case for our formalism. One also expects a term
(dU™ /dt)(1/c) to correspond to the intentional time varying RF field needed for stable
synchrotron oscillations. But because this term contributes only to off-diagonal term dHj,
in the present context it can also be left out.

There is, however, a significant contribution to dHg from dU™4. Referring to Eq. (4.2.2)
one notes that dU™4 is proportional to E?, causing the mean energy radiated by a partic-
ular particle to deviate from the mean energy radiated by the reference particle. We have
dU™ = qUF(E/Ep)? ~ (1 + 26)dU* and

E— E En (1 o rad 1 25) — E rad rad
0 0

) 5, (4.3.8)

0

which implies
dUg™

0

dHg =1 — 2

(4.3.9)
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(The earlier result that there is no contribution to dHg from accelerating fields could have
been obtained in this same calculation using the fact that dU™ is independent of §.)

Combining results the transfer matrix is given to adequate accuracy by

1 0 0 0 0 0
0 1+dU"/Ey 0 0 0 0
0 0 1 0 0 0
X(ds) =~ | 0 0 1+dU™/E, 0 0 (4.3.10)
0 0 0 0 1 0
0 0 0 0 0 1-2dU/Ey
Evaluating the determinant yields
det |X (ds) | = 1+ 2dU / Ey — 24U/ Ey. (4.3.11)

(From here on it will be unnecessary to distinguish between dUy and dU since their differ-
ence is of higher order than ds.) Provided the terms on the right hand side remain small
compared to 1, concatenating over successive intervals ds is equivalent to integrating over
dU™ and dUéad. Furthermore, when integrated over one complete revolution, assuming

the RF is adjusted to just replace the radiated energy, one must obtain

l%ﬂﬁ+fﬁ%m:0. (4.3.12)

In equilibrium this adjustment is automatic. Combining Eq. (4.3.12) with Eq. (4.3.5) yields
Urad

o1 +ag +az =2-2—. (4.3.13)
Eyp

This analyzis was first performed by Robinson, Phys. Rev. 111, 373 (1958), and indepen-
dently (and in less generality) by Orlov, JETP 35 525 (1958). It is known as “Robinson’s
theorem”—in words: for any lattice the sum of the damping decrements is twice the frac-
tional synchrotron radiation energy emitted per turn. It does not depend on the statistical
properties of the radiated photons—only the fractional accumulated energy loss matters.

Historically Robinson’s theorem played a very significant role in the early days of elec-
tron positron storage rings. The lattices of early electron rings were constructed from
combined function magnets. As we shall see, such lattices exhibit extremely strong longiti-
nal damping and hence, by Robinson’s theorem, horizontal anti-damping. This problem
was overcome by separated function lattices in which the bending and focusing is performed

by separate elements.
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4.3.1. Vertical Damping

By Robinson’s theorem the sum of damping rates can be calculated easily, even for a
complicated lattice, but the individual damping rates depend sensitively on lattice details.
One simple, and usually realizeable, case has no “cross-plane coupling” between x and y
or “synchrobetatron coupling” between longitudinal and transverse. In such an ideally

uncoupled accelerator the once-around transfer matrix takes the form
X1 Xo 0 0 X5 X

F, F, 0 0 F; Fg

0 0 Y3 Yy O O

0 0 Gs Gy O 0 [’

Ly Ly 0 0 Ly Lg

H{ H, 0 0 Hs; H;

and one of the three eigenvalues is unambiguously identifiable with vertical coordinate y.

X = (4.3.14)

In this case the preceding analysis can be applied to the 2 x 2 vertical transfer matrix to
determine o, independent of horizontal and longitudinal motion. (See problem.)

Almost invariably, in practice, the numerical values of the matrix elements are such
that the smallest eigenvalue corresponds to longitudinal oscillation and the other two
eigenvalues to transverse oscillation, but this feature cannot be inferred from the algebraic

structure of Eq. (4.3.14).

Problem 4..4. For the case of an uncoupled lattice, just discussed, complete the

calculation and show that the vertical damping rate is given by
1 Urad
y = = 0
2 Ey
In this case vertical damping accounts for 1/4 of the damping assured by the Robinson

(4.3.15)

sum rule.

Problem 4..5. It can be argued that the discussion of damping of pure vertical oscilla-
tions in the text and in the previous problem is internally inconsistent because the magnetic
field has been assumed to be independent of y and yet stable motion with non-zero y im-
plies non-zero focusing fields that depend on y. For the case that all focusing is performed
by independent quadrupoles (for which the on-axis field vanishes), show that the damping

due to radiation in the quadrupoles is negligible for sufficiently small y-amplitudes.




The Influence Of Synchrotron Radiation On a Storage Ring 69

4.3.2. Longitudinal Damping

Oscillations of fractional momentum variable ¢, along with corresponding variation of
longitudinal variable ¢, are known as “synchrotron oscillations”. It turns out that the
frequency of longitudinal oscillation is typically much less than the frequency of betatron
oscillation, so the phase advance per revolution is much less. It is perhaps for this reason
that it is more customary to analyse longitudinal motion by differential equations than by
transfer matrices, and this is the way we will begin. Later an almost equivalent transfer
matrix analysis will be given.

As regards damping, horizontal and longitudinal motion are more intertwined with each
other than either is with vertical motion. Specific lattice details complicate this coupling.
There is an especially important distinction between combined function lattices having
on-axis fields where focusing occurs, and separated function lattices for which all focusing
occurs in quadrupoles having zero on-axis magnetic fields. Problem 4..5 was intended to
provide and advanced hint of the importance of this distinction. Here we concentrate
on isolating the longitudinal damping, beginning with a digression into simple harmonic
motion.

One knows that 0 does not retain its same non-zero value, but rather executes syn-

chrotron (longitudinal/momentum) oscillation, which satisfies f
0 4 p20 = Fj = —2a0. (4.3.16)

A particular approximate solution, having maximum offset dy initially, is
d ~ (606_ast) cos pst,
O~ — g (506_a3t) sin pst — g0, (4.3.17)
5~ — ;1%5 — 20,0,

where a; << 1, which has allowed ag terms to be dropped. (You should check this.) For

many purposes, even the terms proportional to as can also be neglected and the damping

T Since the quantity oscillating is ¢ it would be consistent with our other notation to use ¢ as parameter
subscript. But since “s” (for synchrotron) is a standard notation, and the variable conjugate to § is s which
shares the same parameters, we use “s”. Also, as will be explained later, as may vary as a function of phase
in the longitudinal oscillation cycle. This will make it necessary to replace oy by an appropriate average
value later on. We will continue to use the same symbol however, and the significance of the quantity a

will correspond to the damping rates a;, ay, etc. introduced previously.
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factors e~®s? set to 1. This then supports a “phase space” graph with § as abscissa and
5/ its as ordinate, in which the phase space point stays on a circle of radius dg.

We have anticipated the answer by using the symbol a here—it can be to be equivalent,
though for the whole ring, to the quantity das appearing in Eq. (4.3.4), provided the unit
of ¢t is taken to be the revolution period. For this choice of time, for a slowly varying
quantity such as §, the change in one revolution A and the time derivative 5 are equal

(to the intended accuracy.)

Ab = . (4.3.18)

(Where the symbol A appears in the following discussion it will always have this same
significance.) With this time unit, us is related to the quantity s, conventionally called
the “synchrotron frequency” by s = usfo where wy = 27 fg is the angular revolution
frequency, and the “synchrotron tune” is given by Qs = ps/(27). With non-zero ay the

st each turn.

phase space “circle” slowly spirals in, its radius shrinking by factor e~

For the calculations to be performed now, ¢ is to be held constant during one complete
turn—this is a sensible approximation only if us << 27, as we assume. It is only the
approximate validity of this assumption and “multiple time scale approximation”, (), >>
(s, that makes it meaningful to separate out an explicit longitudinal damping rate. While
its momentum is essentially constant, the motion of an off-momentum particle can be
plotted as in Fig. 4.3.2 and regarded as the superposition of a betatron amplitude g and
a synchrotron amplitude nd Al

In Eq. (4.3.16) the “dissipative force” F; = —2a50 has been written on the right
hand side of the equation in order to encourage treating it perturbatively. To calculate
the damping caused by this perturbation, one can calculate the “work” it does during a

complete cycle of lossless motion; such motion is described by Eq. (4.3.16) with ay = 0,

and the work is given by

]{Fdédt = —20, %Szdt = —a,02 2. (4.3.19)

' For our purposes the separation of longitudinal and horizontal oscillation based on their different time
scales is a satisfactory approximation. This formalism is so firmly fixed in the minds of most accelerator
physicists as to make it difficult to suppress it for phenomena such as synchrobetatron oscillations, where
the approximation is not really appropriate.
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Figure 4.3.2: The betatron amplitude zg of an off-momentum particle
oscillates relative to the off-momentum closed orbit.

Putting completely out of mind the fact that ¢ is itself derived from the particle energy,
we define an entirely independent “oscillator energy”.

Eose = %;@53 = %52 + %;@52. (4.3.20)
(It would not be wrong to work instead with to the “action”, or “longitudinal Courant-
Snyder invariant” but the elementary treatment of simple harmonic motion of mass m =1
and spring constant k = p2, first understood in one’s youth, may make it more familiar to
relate work and energy.) In the same spirit in which F; has been called “force” the terms

in Eq. (4.3.20) can be called “total”, “kinetic” and “potential” energy respectively. The

force Fj causes a systematic reduction of Eyg. according to work done
AFEys = j{Fdédt = —a,0i . (4.3.21)

The overline indicates averaging over a complete synchrotron oscillation period, and Fose
has been replaced by change per turn AFy. which, as explainded previously, means the
same thing. The integration in (4.3.21) has been performed using Eq. (4.3.17). Combining
these formulas and using Foge ~ 5%,

1BE. _ &
2 Eosc 50 .

g = (4.3.22)

This may seem to have been an unnecessarily roundabout procedure until one appre-
ciates that the dissipative force Fy could have had any dependence whatsoever on § and )
(provided it and its accumulated effects are small) and the result Eq. (4.3.22) would still
be valid. We will use Eq. (4.3.22) below to obtain a; from a calculation of AJ.
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Problem 4..6. Look up in an introductory physics text, or rederive, the “work-energy

theorem” of mechanics and confirm that its use here has been justified.

For a one dimensional eigenmotion having A\, = e~®s¥its

as eigenvalue, the phase space
radius acquires a factor e™® each time ¢ increases by 1, which agrees with Eq. (4.3.22), and
is consistent with our interpretation of as. Note though that the attenuation in Eq. (4.3.17)
is uniform—the fractional shrinking per turn of the phase space radius is independent of
oscillation phase. For synchrotron radiation damping this will not be true, but that will
be overcome by averaging—the rate ag will be strictly applicable only when interpreted
as attenuation averaged over a complete period of synchrotron oscillation. This completes
the digression concerning simple harmonic motion.

We have seen in the previous section that emittance changes can result when the radi-
ated energy depends on the particle energy and path. Starting again from Eq. (4.2.2), the
possible dependencies are through E2?, B? and Cp, where Cp is the path length in regions
of nonzero magnetic field B. Also it will not be possible to avoid the effect of transverse
spatial variation of B needed for transverse focusing since, especially in quadrupoles, the
off-momentum closed orbit passes through regions of nonvanishing field even if the central
orbit does not.

We wish to calculate the average damping of pure longitudinal motion. In principle
this could be done by concatenating the differential transfer matrices of Eq. (4.3.10), but
dispersion mixes x and d motions, which makes that difficult. Instead the loss of “oscillator
energy” of an off-momentum particle will be calculated using the formula (4.3.22) just
derived.

Consider the motion of an off-momentum particle having no betatron component and
traveling along the solid off-momentum closed orbit shown in Fig. 4.3.2. In one turn its
energy will be sapped by the excess energy radiated (over and above that radiated on the

central orbit),

Cp+ACE CQ
AU™ ~ K E3(1+20)B%(1+ BB 4 +K EZ (AB)*ds — U™,
0 B 0
(4.3.23)
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22
where K = $5-C,, is an abbreviation for a constant defined in Eq. (4.2.2), all quantities

with subscript 0 are evaluated on the central orbit, and AB(s) is the inescapable, off-axis,

extra magnetic field needed for focusing—it is first order in § and can be written

0B, | dz
AB~ | —§=K ) 4.3.24
| 5= K (s) e ) 6 (43.24)
with n, being the usual horizontal closed-orbit dispersion function, and the field gradient
can be expressed in terms of the quadrupole gradient coefficient K; = pcl/e%b. Under-

standing the long term stability of electron storage rings comes down to understanding all
contributions to Eq. (4.3.23).

An allowance has been made for radiation in quadrupoles by including an integral
over the partial circumference Cg that contains quadrupoles. (Actually, for consistency,
terms for higher multipole elements should be included as well, but they would also be
negligible.) Since only terms of first order in § have been retained and the integrand of the
quadrupole term is proportional to §2, this term will not, in fact, contribute importantly
to damping. Radiation in quadrupoles has been included here to permit making this
point plus three others. (i) If, because of errors, the closed orbit does not pass through the
center of a quadrupole there will be corresponding radiation and some resultant damping—
in a large ring this can require serious attention to preserve the intended damping. (ii)
The denominator factor B in the (B + AB)? Taylor expansion cannot cause trouble by
vanishing—by definition of Cp. (iii) Finally, and most important, in a strong focusing
lattice, the excess magnetic field needed to bend an excess momentum particle through 27
can be, and is, found partially in quadrupoles. Still they do not contribute importantly to
damping. This simple fact has a profound effect on electron storage rings. It might even
be said to be what makes them possible, as it overcomes the anti-damping of horizontal
oscillations.

Having dispensed with quadrupoles, according to Eq. (4.3.23), there are three contrib-
utors to extra radiation: the particle’s energy deviates from nominal, it finds itself in a
higher than nominal magnetic field, or it has excess path length in the bend field. The
first of these is dealt with first, since it comes from the E? factor in the master radiation
formula (4.2.2), which has expanded to E3(1 + 26) in the integrand of Eq. (4.3.23). If this

were the only source of excess radiation accompanying momentum offset §, the fractional
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excess energy loss per unit momentum offset would be given by (1/U2d)(dU™/ds) = 2.
Following Sands, this part is subtracted off, and the fractional excess energy is represented
by a lattice dependent quantity D, known as “curly-D”, that is defined by

1 dumd
U do

~2. (4.3.25)

Recombining all contributions, the damping decrement of  can then be expressed in terms

of D;
AUrad dUrad 1 Urad
= — —5=—(2+D) 2
7 4 E (2+D) 7

There are important cases, where contributions from the other terms in Eq. (4.3.23) are

A§ ~ — J. (4.3.26)

unimportant, in which one has |D| << 1. In this case, the value of A¢ is immediately
known. In general, for any practical lattice, separated or combined-function, isomagnetic
or not, D can be calculated by numerical integration, and that what is mainly done in
practice. Here we will make some simplifications and approximations, mainly rather good
ones, to get simple analytic approximations and develop intuition.

To simplify the calculation somewhat, without essential error in most cases, and again
following Sands, we make the isomagnetic approximation according to which the magnetic
field on the design orbit is either zero or has the same value By. Manipulation of Eq. (4.3.23)
yields

AUrad 2 (OB ACp

— =20 ABds 4+ —— . 4.3.2
Uéad +BOCB 0 s+ Cp ( 3 7)

Segments of the perturbed orbit that newly pass through the nominal field By because
d # 0 are included in the ACp/Cp term.T There is one global requirement that AB(s)
must meet—the total bend after a full turn must remain equal to 2w. Because the rate
of bend is inversely proportional to 1 4+ 4, the existence of 4 > 0 must be accompanied by

contributions from ACp > 0 and/or AB(s) > 0. Quantitatively

ACg 1 Cs 1 Ca
5 = + ABds + / ABds ; 4.3.28
Cp  BoyCg Jy ByCB Jy ( )

the terms being as simple as they are because of the isomagnetic assumption. This formula

shows how quadrupoles can “help” in the bending even though they don’t “hurt” by causing

fIn strong focusing lattices the term ACp/Cp is typically very small, because of large “momentum
compaction”.
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radiation. This relation can be used to re-express Eq. (4.3.27) by eliminating the first

AU ACp 2 Ca
=45 — ABds. 4.3.2
U ) Cn BOCB/O ds (4.3.29)

In the isomagnetic approximation then, D is given by two equivalent forms

1 dCp N 2 /CB dB

Cgp db BoCp Jy dé

or 1 dCpg 2 /CQ dB
0

integral;

D=

ds,
(4.3.30)

xrog - B 2 4.
Cp d6  ByCp a5

The ranges of integration are along the on-momentum, central orbit, and the integrands

are evaluated on that orbit. The second expression is handy (because the integral drops
out) if there are no quadrupoles, as in a combined function lattice.

Useful further reduction of D is different for different styles of accelerator. For example,
a common, not unnatural, but certainly not universal design, uses only uniform field “sector
magnets”. In these magnets the closed orbit enters and leaves all dipoles normal to the
poles, dB/dé = 0 (because the field is uniform), and the path length in drift regions is
independent of §. This permits elimination of C'p(d) in favor of the (more easily known)
total circumference C(4), which is greater by the accumulated lengths of all drift sections.
One then defines “transition gamma”, -y, (its inverse square -y, 2 is called the “momentum

compaction factor”) by

1 1dC(5)

’ytz N O() dé ls=0"’
where dC'/dé = dCp/dé because there is no linear dependence of path length on § in drift

(4.3.31)

regions. Then we have

1 dCp Co 1 AC Cy 1
-5 _ N - == _ Y - 4.3.32
Cgp db CgCy 0 C’nyt?’ (4.3.32)
and
Co 1
D=——. 4.3.33
Cp 1} ( )

With quadrupole elements present, the circumference increases far less than propor-
tional to 1+ 0, —which is the source of the name “momentum compaction”. In high tune
lattices one commonly has v ~ ), which leads to ~; 2 << 1. This is why longitudinal
damping in separated function accelerator is much less than in a combined function accel-
erator. Superficially undesirable, this is in fact good since it saves some of the Robinson

ration to be available for horizontal damping.



76 The Influence Of Synchrotron Radiation On a Storage Ring

We have seen the sort of calculation needed to calculate D and seen that it depends
on lattice details such as whether the lattice is combined function (focusing built into
bending magnets) or separated function (separate quadrupole magnets). All this detail
is distilled into the value of D and we can turn to studying the effect Ad, as given by
Eq. (4.3.26), has on synchrotron oscillation. Fig. 4.3.3 is supposed to be helpful. The
radius of the phase space circle is equal to dp, the maximum value that 0 achieves, and
the instantaneous synchrotron oscillation phase angle is given by pust, where Qs = ps/(27)
is the “synchrotron tune”. Typically Qs << 1 so the synchrotron phase advance, as the
electron completes a whole turn of the storage ring, is much less than 27. The deviation
A6 reduces the radius g, but the effect is proportional to cos? p,t, with one factor cos pt
being due to proportionality to 0 and the other due to the shift being parallel to the 9-
axis in phase space rather than radial. Averaging over one synchrotron period the mean

fractional-decrement of dg per turn is

(g = A% _ (2+ D) (4.3.34)

2E,

Here we have used Eq. (4.3.22) to complete our task of evaluating 5. As the signs have

been introduced ay is a “decay rate” rather than a “growth rate.”

Problem 4..7. Calculate oy for an (impractical) lattice for which the entire central orbit
is in a constant uniform magnetic field. Also calculate «; for the (weak focusing) lattice,
for which (according to Eq. (3.4.1)) the magnetic field is longitudinally constant on the

entire central orbit, but has radial dependence By (r) = Byo(1 — 5 7).

Problem 4..8. In the text an analogy has been established between synchrotron oscilla-
tions and simple harmonic motion of a viscous-damped, point-mass and spring combina-
tion. In this analogy d corresponds to point coordinate  and § to &. What is there about
the damping that violates this analogy, why does that not invalidate the result Eq. (4.3.34),

and how could the analogy be improved?
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S/I-la

Figure 4.3.3: Longitudinal phase space plot with  as horizontal axis and
d/ s as vertical axis, for Qs = 1/24, small compared to 1 as assumed in the
text. Light horizontal arrows (exaggerated in length) are the decrement
of 4 during that particle revolution—the decrement is proportional to 4.
Heavy radial arrows represent the corresponding decrement of the radius
of the phase space circle.

4.3.3. Horizontal Damping and Partition Numbers

We have obtained relations Eq. (4.3.13) for the sum of damping rates a; + oy + o
Eq. (4.3.15) for vertical damping rate o, (in the uncoupled case we now assume) and
Eq. (4.3.34) for the longitudinal damping rate a,. Evidently these can be combined to

obtain ay.

U(I)‘ad U(I)‘ad U(gad
or=(1-D) e, oy =)o, o= @+D) (4.3.35)
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Sands felt (correctly as it turned out) that it would be easier to remember these rates if
they were measured in units of U(‘)rad / (2Eg),]L and quoted as three “partition numbers” .J,,
Jy, forced by Robinson’s theorem to add up to 4. Then Eq. (4.3.35) becomes

rad rad rad
UO UO UO

“0 - J, 20 - J.20
2By T aE, YT T eEy (4.3.36)

Jy=1-D, J,=1, Js=2+D.
For stable operation, all partition numbers must be positive. We can now understand
a comment made earlier, that too much energy damping is bad—it can cause J, to be
negative.
If there were no “heating effect” and all the .J’s positive, all beam emittances would

decay to zero. But there is heating, which we investigate next.

4.4. Equilibrium Between Damping and Fluctuation.

We return to the subject of radiation fluctuations, discussing vertical, horizontal, and
longitudinal motion separately. Actually vertical motion can be dispensed with in one
sentence because, with photons radiated in the exact forward direction (an excellent ap-
proximation in this context) there is no mechanism for exciting vertical oscillations. Since
there is however damping, the bunch height damps down to a negligible value. In the
immediate section the competition between damping and growth caused by quantum fluc-
tuations for horizontal betatron motion is analyzed, and after that longitudinal motion is
analyzed. Though the treatments are entirely parallel, both are given in some detail, and
largely independent of each other. Since the longitudinal case is somewhat simpler, if some
obscurity is encountered in the transverse case, the reader might consider skipping to the
longitudinal case in hopes of finding an argument less cluttered with “helpful” verbiage.
There is a well-established stochastic formalism using the Fokker-Planck equation for
analyzing problems like this. I prefer not to use that formalism at this time, instead using
“physical arguments”. It would be more accurate to say “arguments presented in terms
likely to be persuasive to physicists” as, other than in degree of rigor, the arguments are

much the same as could be used to establish the Fokker-Planck equation. (That will in

ctually, since the quantities a; as Sands defines them are rates per unit time rather than rates per
T Actually, since th titi Sands defines th t it ti ther than rat
revolution, his rates are measured in units of Ut /(2T Fy) where Ty is the revolution period.
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fact be done in a later section in order to describe the approach to equilibrium and particle
loss mechanisms.) Only one result will be assumed from probability theory and that is
the Central Limit Theorem. In oversimplified physicist’s terms, this theorem states that

repeatedly convoluted distributions become Gaussian and errors combine “quadratically”.

4.5. Horizontal Equilibrium and Beam Width

This discussion of beam equilibrium commencing now is complicated by the fact that three
separate averagings are to be performed: over betatron phase, over photon energies, and
over lattice elements. (Over lattice elements it is actually a sum rather than an average,
and over photons it is both an average and a sum, but that is getting ahead of the story.)
Consider the on-momentum particle illustrated in Fig. 4.5.1. It is free of betatron motion
and traveling on the central orbit at the instant a photon of energy u is emitted exactly

in the forward direction. The emission changes the particle energy but not its direction;

u
brb— o (4.5.1)

The coordinates of the local closed orbit corresponding to particle with fractional energy
offset § = —u/Ey are (—n,u/Ey, —n.u/Ey). But the physical location of the particle is
exactly the same as before the emission, which is to say on the closed orbit appropriate
to the previous momentum. This means that horizontal betatron phase space components
(ngu/Eo,n,u/Ep) have been impulsively imparted to the particle.

In general, a beam particle already has non-zero betatron components corresponding

to some Courant-Snyder invariant

l'2 + (Bg;l'l + O!g;CL')2 also
T

before the emission takes place. Its coordinates at location s are

zo = \/ B (8) €xo COS Yy, TH= — Bﬁa:(os) (sin Py + % cos ¢x> , (4.5.3)

where a; = —f3./2 and 1,(s) is its horizontal betatron phase. After the photon emission

T2+ 20,07 + ﬁxxlz , 4.5.2
Y

the phase space coordinates have become

€ . (6]
1 = \/Br€ro oS Py + nmU/E07 l'll = /2 <Sln Yz + B_m COs ¢x> + ﬂ;U/EO- (4'5'4)
T T
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closed
orbits

Figure 4.5.1: Betatron oscillation induced by forward emission of photon

of energy u for an initially off-momentum particle which has negligible
betatron amplitude.

al= X2+X'2[32

emission
increases a’

Figure 4.5.2: An impulsive increment A to the betatron displacement

can increase or decrease the Courant-Snyder invariant. But, averaged over
phase, there is a net increase that is proportional to AZ2.

It can be seen from Fig. 4.5.2 that a photon emission can increase or decrease the
Courant-Snyder invariant, depending upon the betatron phase.

Averaging over phase
angle 1 proceeds as

(acost) + A)? + a?sin® ) — a2 = 2aA cos ) + A2 = A? (4.5.5)
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Because the value of v, where radiation occurs is random, terms proportional to sin ),
or cos, average to zero when averaging over 1. (Averaging over betatron phase is to
be indicated by an overhead line.) The phase-averaged change in the Courant-Snyder
invariant, A€ = €;1 — €40, due to the emission of a photon of energy u at location s is

defined to be H(s)(u/Ep)?, where H(s) goes by the name “curly H” and is given by

s (s) = B el = af o+ 20mia] —aorh + art” — af’
- - 2
(u/Ep) (u/Ep) (4.5.6)
2 / 2
2 + (Baemy + @
:’Yﬂ?; + 20‘1‘771‘77;; + an/ = Nz ( mﬂg 1'771‘) .
T

It is important to appreciate that H(s) depends only on lattice functions.

The averaging so far has been over betatron phase, permitting the expectation value
of growth due to the emission of a single photon of energy u to be calculated. Since the
growth due to uncorrelated emission of many photons is proportional to the number of
photons, the total number of photons with energy v must be calculated next and the result
then summed over photons of all energies. It is also necessary to fold in the damping effect
calculated in an earlier section. In equilibrium the growth and damping cancel. It turns
out that in practical situations the time constant governing approach to that equilibrium
is long compared to the revolution period Ty = 1/fp of the accelerator. This a priori
unguaranteed feature will be used to simplify the calculation at this point, and justified a
posteriori.

Because the lattice functions and the spectral functions depend on s the instantaneous
rates should be calculated first and then integrated over lattice elements. Unfortunately
our earlier discussion of fluctuations made assumptions that break down for too-short
path intervals. But the long time constant mentioned in the previous paragraph makes it
legitimate to treat €, as essentially constant for the duration Ty of a single turn, say the
t-th turn, and to accumulate changes over a full revolution. Permission is now requested
to permit the clumsy, but temporary, notation, m, to stand for the betatron-phase-
averaged, cumulative for energies less than u, increment of the Courant-Snyder invariant
during one full turn. (The symbol u has been moved from being a superscript to being
an argument as a lame indication that u is now the upper limit of a range rather than

a running variable.) From calculations performed so far, the increment dAe;(u) coming
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from photon emissions in the range u to u + du can be given in terms of 4 and radiation

formulas;
ds/c
dAe, (u) = E2 %’H < u Ny (u) . (4.5.7)

Here P,ds/c has given the energy emitted in path ds as in Eq. (4.2.2); this energy has
then been converted to total number of photons by Eq. (4.2.8), and their distribution as an
energy spectrum expressed as n,(u). The energy accumulated, Courant-Snyder one turn

increment will be denoted

o0
d
Ael :/ o —Ae, (u)du' = Aey (00). (4.5.8)
0
On the symbol Ael the superscript P for “particle” has been introduced to make the
point that this is an individual particle parameter, and to distinguish it from a parameter
x, with B for “beam”, to be introduced shortly. I have also taken the opportunity to
restrain the proliferation of averaging and overline symbols. The averaging over betatron

phase and integration over photon energies just described will be implicitly assumed to

have occurred in what follows.

A few sentences of justification may be in order. In a varying magnetic field the length
over which B can be treated as constant is so short as to make the fluctuation in number
of photons emitted fractionally significant, contrary to assumption. But if one visualizes
the integal of Eq. (4.5.7) as broken into a “Riemann” sum of terms that are re-arranged
and gathered together into groups of terms for intervals on which the field has (essentially)
the same value, then the fractional fluctuation in number of photons emitted within each
such group is much suppressed—Ilet’s say made negligible. Since rearranging the terms
in the Riemann sum does not change the integral, and our model treats all emissions as
uncorrelated, Eq. (4.5.7) has been legitimized. A further pedantic point, made only to
encourage contemplation of this formula, is that the factor n(u) cannot be taken outside
the integral, even though w is being held fixed, because the distribution function n(u)
depends on the magnetic field, which depends on s. In an isomagnetic lattice n(u) could

be taken outside, making moot all the concerns of this paragraph.
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It remains to integrate over all values of u, which yields

el E2 %’H < ;ZS/C/ Wn, (u') du
u(

P, (s)ds/c
M) <U( 5) >4

(4.5.9)
Eg u? (s) >
Note that this is independent of the pre-existing betatron amplitude.

This result was anticipated in Eq. (4.2.12). In particular the integrand is proportional
to u. dUp/ds. However the present result is more general in that the lattice dependent
factor #(s) has been correctly folded in under the integral. Nevertheless an approximate
growth rate can be based on the estimate of the sum of squares of radiated energies by
1.323 u, U‘rszCl roughly speaking, the root mean square energy radiated is the geometric
mean of the critical energy and the energy loss per turn. If all radiation in one turn
occurred at a single location where 7., = a, = 0 (so that H ~ n2/B;) the expected
horizontal emittance growth would be Ael ~ 1.3n2u Ut/ (E2B,).

At this point it is important to distinguish between the Courant-Snyder invariant €,
of an individual particle, defined in Eq. (4.5.2), with superscript P having been added to

B

emphasize the point, and the “beam emittance” €5, encountered now for the first time (in

this context);
B — o3 (5)
Y Bel(s)’

where 0, (s) is the r.m.s. beam width at location s. Equivalently o2(s) is the “variance” of

(4.5.10)

z. Recall that 2 is independent of s. (Choosing the same symbol ¢ for these two different
quantities, as is universally done, is certainly confusing, and at this point it is misleading
in a way that makes a factor-of-two error likely. The symbol o, is equally deserving of
being decorated with the medal “B”, but this is unnecessary since there is no conceivable
misinterpretation of o, as an individual particle parameter.)

Because the transverse distribution is the result of a random walk, by the central limit
theorem, the distribution is Gaussian, at least in the linear regime. There is an arbitrary,
conventional, numerical factor in the definition of €2 and the choice here of this number as 1
is a special “electron world” choice. (Since proton beams are not necessarily Gaussian, the
conventional “proton world” definitions of €2 define phase space areas containing “most”

of the beam particles.)
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The probability distributions of z and the quantity v = B,2' + a,x are assumed to be

identical, normalized, independent, and Gaussian;

] 1
= e i, P,(v)= e 2z, 4.5.11
V2mo, v (v) V2mo, ( )

Here, and in the rest of the section, we are observing the beam at a fixed reference location

P, (x)

in the ring, where the lattice functions a, and (3, are fixed and known. The two-dimensional
joint probabilty distribution of x and v is Py ,(z,v) = Py(z)P,(v). From this one can
calculate the expectation value (i.e. average over all particles in the beam) on the i’th
turn
2., .2 — 9.2
< Z7 + U7 >beam™= 2Ux7 (4'5'12)

2

where o7

would depend on ¢ only in dynamic situations. Calling the effect of radiation
fluctuations “excitations”, the trick now is to treat the excitations (Az, Av) occurring
during one turn as Gaussian distributed with shortly-to-be-determined variance x2,
1 Ax? 1 Av?

262, P, (Av) = 262, 4.5.13
\/27m6 AU( U) \/27m6 ( )

These are the effective Gaussian-distributions of the one-turn accumulations of radiation

Pa, (Az) =

fluctuations. Superposition of these deviations on a pre-existing (Gaussian) distribution
will be handled by convolution.

(Even though individual emissions are far from Gaussian, by the Central Limit Theo-
rem, for not-too-bizarre distributions, the sum of many emissions is Gaussian distributed
with variance equal to the sum over individual variances. Like the distributions of x and
v, that are identical because of isotropy in phase space, the distributions of Az and Awv
must be equal in order to preserve isotropy. It would scarcely be quibbling at this point
to ask “Who says isotropy must be preserved?” A pleasing answer would be based on
solving the stochastic equations and proving it to be true. A less satisfying answer is
that decoherence causes tangential “shear” motion in phase space and that shear causes
“mixing” or “filamentation” which maintains isotropy in phase space for practical tune
spreads. Though this argument is somewhat of a swindle, coming as it does “from left
field”, it nevertheless is descriptive of actual beam behavior. Without pursuing the issue
of which argument is correct, and conscious of the great simplification that will result, we

shamelessly claim that our approach correctly describes the “physics”, and proceed.)
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The value k2 needed to match the expectation value AefcD (a quantity previously cal-

culated in Eq. (4.5.9)) satisfies

Aef _ = Az + AV >oxcitation = 257 or k2= Lerg. (4.5.14)
Bz B 2

There is no point in proceeding without having assimilated the purpose and meaning of this

equation as it is the linchpin of the entire development. It links the beam-related quantity
k% to the particle-related quantity Aef . It also contains the answer to a question that
is sometimes of practical importance, “What are the beam dimensions of an initially-zero
emittance beam after one turn?”

The probability distributions of z;41,v;41 after one turn are convolutions of (4.5.11)
and (4.5.13). Gaussian variances being additive, the new variances are both equal to
02 + k2 = 02 + BerP/Z This is a timely point to include also the effect of damping,
which has the effect 02 — 02(1 — 2a;), with a, obtained from Eq. (4.3.36). Combining
both effects

< 2l + V2 Sheam= 202 (1 — 2az) + BrAel. (4.5.15)

In equilibrium o, ;41 = 04 ;, which implies

2
B_ Tr _ Ae
€ . 4.5.16

(If the final emittance ¢Z were made up in equal steps of size Ae’, the total number of steps
would be (4a,)~!, a quantity that can be referred to as the “relaxation time measured in

turns”.) Incorporating Eq. (4.5.9), the equilibrium beam emittance is given by

ds/c

6520_%_A6£:56H <u?(s) >,
By Aoy 2E0J §P )ds/c (4.5.17)
_ue 1.323§H (s) B® (s)ds _ 1.323u, "
B 2EyJ, §B2 yds  2FEyJ, < 7t Zisomag—only,

where o, has been obtained from Eq. (4.3.36), U*! from Eq. (4.2.3), and the ratio of

radiation moments from Eq. (4.2.7). Knowing from Eq. (4.2.5) that the factor “C((j)) =

3 ch ,yz is independent of B, that factor has been moved outside the integral, and this leaves

the emittance given by an integral weighted by B® divided by an integral weighted by B2.

This implies that increased damping due to excess radiation in local regions of specially high



86 The Influence Of Synchrotron Radiation On a Storage Ring

magnetic field (increasing the denominator) cannot make up for the increased quantum
fluctuations in the radiation that increase the numerator. This shows that the emittance
is minimum in the isomagnetic case. The final form, valid only in the isomagnetic case,

uses H averaged over dipoles.

4.6. Minimum Vertical Beam Size

Because of the near forward direction of radiated photons, the beam height tends to be tiny
compared to its width. This section discusses this issue more quantitatively. Most readers
are advised to skip the section.

When a photon of energy w is emitted with vertical angle 1) the electron recoils with

vertical angle ¢u/FEy and, as in Eq. (4.5.4), the vertical coordinates are altered to

Y1 = /Byeyo cosy, Y1 = —\/Byeyo (sinwy + % coS wy> + fa—z , (4.6.1)
y

and (as in Eq. (4.5.6)) the change in vertical C-S invariant, averaged over betatron phase,

18

w2u2
2
E 0
As in Eq. (4.5.7), the change in C-S invariant over a full turn, from photons in the energy

5 ———— . .73
Aey” = vyt — g + 20155 — yoh + Byyl” — vy’ = By (4.6.2)

range u to v + du and angular range 1 to ¥ + dv is given by

? — 1 .2 o Py (s)ds/c
oudyp Aey (u, ) = E_g fﬁy( Y Wnu,d) (u,9) - (4.6.3)

As in Eq. (4.5.9), accumulating over all values of u and v, the increase in vertical C-S

invariant after one turn is given by,

A P Ei P dS/C/ / /By u(ul,wl) duld’ll)l
0
(4.6.4)
)d
Ezfﬁy T)Sff”ﬂ’z(sm-

To this point I have tried to retain the dependencies on s, but for purposes of estimation let
us assume all lattice functions to be independent of s. Also let us assume! < u?)?(s) >,=<

u? >,/ v2. Then the ratio of single-turn emittance growths is given by

Ael 1
—%%%%7. (4.6.5)
Ae; ng Y

' The value of < u?9?(s) >, is presumably well known but, for the moment, not knowing what it is, I
adopt the usual estimate of vertical angle, namely 1/7.
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If the horizontal and vertical damping partition numbers are equal, the ratio of equilibrium
beam emittances will retain the same value. For an ultra-low emittance lattice, values of
the parameters might be 8, = 1m, 3y = 25m, n, = 5 X 1073 m, and the emittance ratio

would be about one to one hundred; i.e. height/width=0.1.

4.7. Longitudinal Equilibrium and Energy Spread

Excitation of energy oscillations can be analyzed in much the same terms as horizontal
betatron oscillations, but there are three simpler features in this case. One has to do with
the longitudinal analog to ;(s). An analogous function, f5(s), can be defined to describe
the modulation of energy oscillations as a function of circumferential coordinate s. But
our model so far has legitimately assumed that longitudinal quantities vary so slowly as to
be essentially independent of s; this is equivalent to taking 85 = constant, and for present

purposes we can take the constant to be 1. Hence we define an analog to ef by
el =6+ =’ (4.7.1)

where w is the phase-space coordinate complementary to d, scaled to make the phase
space trajectory circular. (In the linear regime tw is proportional to the longitudinal
displacement from the reference particle, but that connection will be developed later.)
The superscript P stands for “particle” as this is a parameter of an individual particle.
As before the motivation behind analyzing ef; , rather than ¢ itself, is that its constancy in
the unperturbed situation permits averaging over oscillation phases while calculating the
effect of the emission of a photon. The second simpler feature is that a photon emission
does not alter =, and the third is that the radiation of the j-th photon, of energy u;, is
reflected directly by a change Ad = —u;/Ey. As a result the synchrotron-phase averaged

increase in single particle invariant is

Al = — (4.7.2)

without any need to introduce an s-dependent factor analogous to H(s). This formula, the
analog of Eq. (4.5.6), can be described simply by saying that if an H had been introduced
its value would be 1. Eq. (4.7.2) must be summed over photons emitted during one full

turn to obtain Aef; , the corresponding increase in single particle invariant. Analogous to
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Eq. (4.5.9) the result is

syds/c [ u? (s
Ael = ! fM/O u’ny, (u') du’ = S % va (s)ds/c.  (4.7.3)

" T E2) <u(s) >, E} ] <u(s) >,
In the isomagnetic case this becomes

p U <w?(s) >, 1.323u U5

AcP = - (4.7.4)
E <u(s) >, E?
This result is closely connected to Eq. (4.2.12) which can be expressed as
No 4
1.323u U
2 _ 0
DI (4.7.5)
j=1

(At this point one might inquire why it is not < w?

>y — < u >%, the variance of
the probability distribution of photon energies, rather than < w2 >, that enters. This
replacement might be appropriate if the electron were subject to no longitudinal restoring
force and were simply dribbling away its energy in fluctuating lumps u;. But, as was
true for transverse excitations, it is only the term < wu? >, that survives averaging over

synchrotron oscillation phases.)

Corresponding to Egs. (4.5.11), § and w distribution functions for the beam are

2 2
0 @
1 T35, B2 1 5,52

_ e 5, Pg(w)= e 75, 4.7.6
\/2%0(? w( ) \/2%0? ( )

where the superscript B stands for “beam”. Fluctations in longitudinal amplitudes for one

Ps (6)

complete turn are distributed as in Eqs. (4.5.13)

1 _as 1 Aw?

e 22, Pag (Aw) = e 2x2 . 4.7.7
- e () (4.7.7)

There is no harm in using the same symbol x here as it will be eliminated immediately in

Pas (A)) =

this argument, as it was above. For that matter, the variable @ will also disappear shortly.

As in Eq. (4.5.14), the value of 2 needed to match Ae] is

Ael
W2 25 7

(4.7.8)

and, analogous to Eq. (4.5.15), the beam evolves during the i’th turn according to

<01+ @i Sbeam= 205, (1 — 2a5) + Aej . (4.7.9)
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Problem 4..9. Complete the preceeding argument to show that, in equilibrium, in the

isomagnetic case, the longitudinal beam invariant is given by

P
B o Aeg

e i 4.7.10
€% =% =7 s ( )
where Ael’ comes from Eq. (4.7.3) and «; comes from Eq. (4.3.36).
Problem 4..10. Continuing from the previous problem, derive the formula
0.813 fe (4.7.11)
os = 0. —_— 7.
0 (2+ D) Ey

for the r.m.s. beam energy spread in the isomagnetic case, where the partition number
Js, defined in Eq. (4.3.36), has been introduced, and replaced by 2 + D. This formula is

especially useful in the common case, e.g. separated function lattices, that D << 2.

In general, calculating the energy spread requires integrating over the lattice as in
Eq. (4.5.17),

P, (s)d
- Ae(gp - % <u’(s) >y 1323 Ue < B3 > it

da, 2B, § Py (s)ds/c  2EgJs B < B2 >omit.

o5 (4.7.12)

Here, as was true when calculating the horizontal emittance, the factor %CT(::))’ being indepen-
dent of B, can be taken outside the integral, leaving Ug proportional to < B3 > / < B? >.
Comparing with Eq. (4.5.17), this means there is a strong tendency of energy spread to
be proportional to horizontal beam width. This tendency can however be overcome, for
example to obtain small horizontal emittance, by designing the lattice in such a way that
‘H is small at locations where B is large.

At this point it may be appropriate to look at the statistical discussion in Appendix A.
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4.8. Bunch Length Determination

[Since this section has been grafted in from a different source without much care, it may
not be very coherent.]

Some experiments for which synchrotron light beams are used study ultrafast time
dependencies, and for these the duration of individual photon bursts is important. This
duration is given by the photon bunch length (divided by ¢.) Though the burst observed at
detection screen P from any one electron is much shorter than the electron bunch, because
the electrons are traveling at the speed of light, and emissions from individual electrons
are incoherent, the photon and electron bunch lengths are the same. Having calculated
the electron energy spread, we are now able to calculate the electron bunch length.

The very understanding of longitudinal stability was judged sufficiently important to
earn McMillen and Veksler the Nobel Prize. It is the basis of all high energy accelerators.
The essential element needed for this stability (and to make up for the energy taken off in
synchrotron radiation) is the RF cavity. When passing through an RF cavity a particle
acquires extra energy AFE that can be expressed in terms of ¢t which, (scaled by a factor

¢), is the arrival time ¢ at the cavity relative to that of the reference particle,

N t
AE = eV (t,)sin wrf (ta)
c

ct + do (ta)| — U (t,) . (4.8.1)
(In this formula, the energy loss per turn has been temporarily allowed to depend on
an “absolute” time variable t, to allow for the possiblity that the accelerator energy is
changing, or “ramping” as the process is known.) The RF frequency w,¢(t,), amplitude
V(ta), and phase ¢g(t,) are supposed to be adjusted so that the reference particle acquires
precisely the correct acceleration to stay on the reference orbit. In Eq. (4.8.1) allowance
has also been made for a possible lumped energy loss each turn given by U(‘)rad(ta). In
practice this would be due to synchrotron radiation or wall-impedance loss, distributed
continuously around the ring, but we assume that it can be adequately represented by a
single loss occurring at the RF cavity. This same formula is applicable to the “ramping up”
of energy during the acceleration process, but we will assume that a steady beam is being

described. In this section we will set up analogies between longitudinal parameters and the

more familiar Twiss parameters and emittances of transverse oscillation. The assumption
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that lattice parameters are being held constant requires that the nominal ¢t = 0 particle
receives no net energy so eV sin ¢y = u in Eq. (4.8.1).

Reviewing earlier material, transverse (betatron) motion of a particle through one
revolution of an accelerator lattice is conventionally represented using transfer matrices:

( T ) _ <cosux+q$sinux Ba;sinp,a;. ) < T ) (4.8.2)
dx/ds, —g SIN fig COS [y — Qi SIN fly dx/ds,
t+1 t

where (x,dx/ds,) are transverse phase space coordinates, with s, being arc length along
the reference orbit. (The subscript a is to distinguish from the symbol s = —v(ct)/c which
now represents displacement relative to the reference particle.) The Twiss parameters
Qyz, Bz, and 7, have their customary meanings.

We wish to employ a similar notation for longitudinal motion but to use (ct,d) instead
of (x,dx/ds,) as phase space variables. In analysing motion in longitudinal phase space
the following points should be noted

e Unlike dx/ds, above, § is not d(ct)/ds,, though in a linearized treatment it is

d(ct) _ nsyn )

proportional to that quantity. (Derived below: dse = vofc?"

e Because of the externally imposed time dependent ramping and RF, it is natural
to use time t, rather than s, as independent variable.

e If the longitudinal focusing were uniform around the ring it would lead to
pure simple harmonic oscillation but that is not the case. The RF cavity acts
like a “thin lens“ for longitudinal motion, slowing down front runners and
speeding up tardy particles. If we need to describe longitudinal evolution at
intermediate times, while the particle is not located right at a solitary cavity,
(as would be necessary with more than one cavity) “g-functions” that depend
on the independent variable, are, in principle, required. But we assume that
the focusing is weak (i.e. the effective “focal length“ of the RF cavity is long
compared to the ring radius, or equivalently ps << 1) so that s can be assumed

to be constant. This will be justified below.
Longitudinal evolution is then described in Twiss form by

ct o COS [Ls Bssinus ct
3 e(mm (@) ws
t

t+1
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with an ad hoc damping factor as = e % included. The analogy between B, and an ordinary
beta-function will be established below. Consistent with BS being treated as constant, ag
has been taken to be zero and v, = I/Bs

To make this into a rotation the scale along the energy axis can be changed;
ct — 4 COS Jig  Sin fig ct (4.8.4)
Bs0 T\ —sinps  coS g Bs0 e
t+1 t

The numerical values of the parameters pu; and BS, parameterize the single turn analytic
longitudinal oscillator description. In particular, o, the r.m.s. spread of ct, is related to

os, the r.m.s. fractional momentum deviation, by

oot = Bs 05. (4.8.5)

These parameters are now to be related to the other important quantities:

® Wrey: the revolution frequency; Tre,: the revolution period = 27 /wyey,

e w,r: the RF frequency,

e (Cp: the circumference,

® 74;isp: the dispersion function which is a function which, when multiplied by 4,
gives the off-momentum closed orbit,

e R : the local radius of curvature,

o 2. the momentum compaction factor, = Cy ! fOCO ds ngisp/ R; this quantity is
(dC/Cy)/dé, the ratio of the fractional change in circumference, divided by the
fractional change in momentum. For simple FODO lattices, a rough approxi-
mation is <ngjsp> >~ 27((3—2%, which leads to v, 2 ~ v, 2 where v, is the horizontal
tune.

o v 2. = (1/vg)(dv/d6), the usual relativistic factor,

® Nsyn: = (dC/Co — dv/vy)/dS = v — y~2; “syn” stands for “synchronous” and
this factor is frequently called the “slip factor”. It is especially important in
proton accelerators, since it can change sign “at transition” when v = ;. For

2 can typically be dropped from Ve 2 hecause

electron accelerators the term v~
v >> 7. The main use for 7y, is in obtaining

e A(ct): (linearized) change in ct after a full turn (due to §) = cTrey(Nsynd)-
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e vg: velocity of reference particle, = dFE/dp. (This formula, and others to
appear imediately do not actually assume the particles are highly relativistic,
and neither does Eq. (4.8.1). But, in present context, £ = pc.)

e ¢V: maximum possible energy gain in the RF cavity,

ef/wr 7 €OS ¢

ct. There are two
CUo

e Ap: (linearized) momentum change at RF, =
possible choices for the angle ¢g, both of which lead to the same acceleration
per turn of the reference particle. The ambiguity will be resolved below by
the requirement that the motion be stable; the sign identification switches in

passing through transition (where 7y, changes sign).

Assuming small amplitudes, the (linearized) change in d at the RF can be expressed

by a difference equation, using ¢ as turn index

verf cos ¢y
i+3 i—% pOTCtZ (4:86)

(There is nothing special about +% and —%. Any other points before and after the RF
would be as good unless for some reason it was considered useful to treat o as a smoothly
variable function, in which case the present choice is a good one.) The longitudinal evolu-

tion for two consecutive turns is given by

ctit1 — ctj :CTrevnsyn5i+ly
2
(4.8.7)
cty —cli—1 :CTrevnsyn5i_%a
Subtracting these two equations, and applying Eq. (4.8.6) yields
T, eVwy s cos
ctiv1 — 2ct; + cti—1 = revilsyn v/ b0 ct; (4.8.8)

Povo
The synchrotron tune ps can be obtained directly from this equation because the coefficient
of ct; is 2 cos ps;
Trevnsynevwrf Cos ¢y
2povo
In all practical cases pus is sufficiently small to allow the small angle approximation, so that

cosps =1+ (4.8.9)

T, 14
/{z _ revlsyn€V Wy f COS o) (4810)

VoPo

For stable motion it is required that ps be real, which implies that the choice of angle ¢

must be such that cos ¢y and 7s,, have opposite signs.
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Another important parameter operationally is the “overvoltage factor” eV / Uéad which
may be required to be as large as, say, 5, to insure adequate particle lifetime. It is important
because the RF cost depends primarily on V.

The description has been in terms of difference equations, rather than differential
equations; with the RF concentrated at one point this constitutes a correct description.
But, because the synchrotron tune is usually small, the angular steps in phase space are
small, and it is customary to introduce a “smoothed* description in which the longitudinal
variables execute simple harmonic motion. In that spirit, the “synchrotron frequency” wy
can be obtained from the synchrotron tune;

i
Trev

(4.8.11)

Wg =

In the same spirit, the smoothed rate of change of the longitudinal coordinate ct with
respect to t, can be approximated by

d(ct)  Alct)
dta — Trew

= CTsyn0. (4.8.12)

It is convenient to change the scale of the “y-axis®, i.e. of the second component, so that

the phase space motion is circular. For this purpose, as in simple harmonic motion, the

phase space coordinates need to be (ct, wlsdcgfz)). On the other hand, for using the beta-
function terminology, they need to be (ct, s dcgscz)). Utilizing the relation Cy = vgT}ey, and

substituting from Eq. (4.8.11), we obtain the relation

_&
fhs

Bs (4.8.13)

This should be regarded as the “longitudinal beta-function”. But for analysing longitudinal
motion, the phase space coordinate pair introduced in Eq. (4.8.4) is the convenient phase
space coordinate pairs, because 0 is explicit in it. For this the vertical axis in phase space,

going with the horizontal axis ct, is

ﬁsd(ct) _ Cottsyn 5, CoMlsyn (4.8.14)

dsa  psUo/C Ihs
or in the notation of Eq. (4.8.4) ,
(4.8.15)
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Knowing fs, are now able to calculate the “bunch length” o, given by Eq. (4.8.5), for
example using numbers typical for CESR:
Co 768

7= 2 70 T 21 % 0.04 x 102

0.6 x 1073 = 1.8 cm. (4.8.16)

This is a number that has been used previously in discussing undulator radiation.

The tune ps is rarely greater than 0.1 and is normally far less than that. As a result
the “longitudinal beta function“ s normally exceeds the ring radius R. This justifies some
of the assumptions that have been made, such as neglecting a; and treating 35 as constant.

It can also be noted, since the transverse beta function satisfies <f3,> ~ Co/ ., that

ﬁs - @
<By> Ms

the ratio typically being in the range of hundreds or thousands.

: (4.8.17)

The entire analysis to this point has been linearized, but description of large ampli-
tude motion is also important. In general this requires numerical treatment, but analytic
formulas for features of the separatrix, such as the maximum excursions of the variables
and the “bucket area”, can be obtained. Since this discussion relies on the smoothed de-
scription, it is only approximate. Eq. (4.8.8) can be repeated, but without being simplified
by linearization, by substituting directly from Eq. (4.8.1);

cti+1 — 2ct; + cti—1 __ Nsyn [6‘7 sin <LUrf

“rf ot + 0) — u] 4.8.18
Trzev pOUOTrev c ¢ ( )

Interpreting the left hand side as a difference approximation to the second derivative

d?(ct)/dt? one obtains the “Newton’s law“ equation satisfied by ct

d? (ct) Nsyn N W f
— Vsin | —Lct — 4.8.19
dtg PovoL ey [e Sll’l( c ct+ ¢0> u] ( )

Points where the “force” on the right hand side of this equation vanishes,

eV sin (ﬂct + QSO) = u, (4.8.20)
c

are the fixed points of the motion. The angle ¢y has previously been chosen so that ¢t =0
is the stable fixed point. As a result the unstable fixed point, which is also the maximum

excursion of ct, is given by

C .1 u
t = — — 4.8.21
(C )max Wr f (Sln % QSO) ( 8 )
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The separatrix separating stable and unstable motion passes through the ct axis at this
point. The rest of the separatrix is determined by “conservation of energy “. To exploit the
fact that the right hand side of Eq. (4.8.18) depends only on the dependent variable ct, it
can be written d?(ct)/dt2 = —0V/0(ct), where V is a “potential energy” function given by

0
Y=t 1 s (ﬂcwr qso) Yuct]. (4.8.22)
PovoLrey | Wry c
Then “energy“ &£ defined by
d (ct)\>
€= <—(C )> +V
dt,
v (4.8.23)
= (Cnsyn)z 0% + Toyn e cos (mCt + QSO) +uct
Pov0Lrev Wr f c

is a constant of motion. In this language, the term (dcgfi))2 can be thought of as “kinetic

energy”. Since § = 0 at the previously determined maximum excursion point (ct)mqz, the

maximum value of £ is given by

ecV

wrf

MNsyn
pOUOTreU

gmax =

cos [w;f (ct)aw T 0| +u (ct)mam] . (4.8.24)

The maximum value of 9 is then obtained from the stuation when the “energy is all kinetic”

by

&
6mam - e . (4.8.25)
CNsyn

The approximate bucket area is mdmaz(Ct)maz if the phase space axes are § and ct. Tra-
ditionally the bucket area A is the area of a graph of energy versus time and is given in

electron-volt-seconds. As a result

A >~ Tz (€t) 00 POV0/C. (4.8.26)
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4.9. Tune Dependence of Emittance

97

Some of the important lattice parameters for a pure FODO arc are listed in Table 4.9.1

and plotted in Fig. 4.9.1. The quantity sin™ ¢, proportional to natural emittance, is also

shown, as is the quantity 1/sin~> ¢Amax, proportional to the the maximum beam width.

Table 4.9.1: Dependence of some lattice properties on phase advance per
cell 2¢. FODO lattice with 50 cells, [ = 7.68 m, [ = 6.528 m, Af = 27/100,

R =103.9m, B=0.1641T, v = 10

2¢ B/p /i |1/sin* ¢ | Ha /B Hay q
cell beta eta numer- (4.9.4) |1/2 quad
phase |min/max | min/max ical strength
degrees m m m m m 1/m
63.4 |8.25/25.9 | 1.300/2.20 7.010 0.1941 |0.1923+/-0.0055 |0.2090 | 0.0705
77.6 5.94/25.2 | 0.853/1.61 4.065 0.1112 |0.1086+/-0.0060 |0.1232 | 0.0842
90.0 4.57/25.8 | 0.632/1.30 2.828 0.0756 | 0.07224/-0.0064 |0.0858 | 0.0950
91.8 4.44/26.0 | 0.614/1.27 2.700 0.0729 | 0.0693+/-0.0065 |0.0819 | 0.0961
106.0 |3.25/28.3 | 0.460/1.05 1.963 0.0513 | 0.0461+4/-0.0072 |0.0595 | 0.1076
120.4 |3.39/32.7 {0.369/0.914 | 1.530 0.0406 | 0.0329+/-0.0081 |0.0464 | 0.1168
135.0 |1.68/41.1 |0.310/0.822 1.268 0.0363 | 0.0240+/-0.0092 | 0.0385 0.1244

Calculation of the beam emittance begins with H(s) defined in Eq. (4.5.6), In a pure

FODO lattice, with no “n-mismatch”, The n-function and [, function are related to good

approximation by

n(s) = const.ﬁgy2 (s) =

[ atyp
xr

where ¢, the phase advance per half-cell. It satisfies

t
nyp

sin ¢ = ¢/,

12 (s) = A0 Y2 (sin ) 32 BY2 (s),

(4.9.1)

(4.9.2)
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LATTICE PARAMETERS RELATIVE TO 90 DEGREES PER CELL

2.5 X T T T T T T T
beta_max(90) = 25.8m —<—
N ; 3 beta: min(90) = 4.57m -+-- |
N 3 3 eta_max(90) = 1.301m -=-- |
X, : : eta_min(90) = 0.632m < :
2 | o S AR e g = half-quad stri(90) = 0.095mA"=1 =A== i P ]

N eps ~ sin(-3)(90/2 deg) = 2.828 - -- |
P ] max. width ~ sqrt(beta_maxteps) -o--

See symbol key

0 | | | | | | |
60 70 80 90 100 110 120 130 140
Phase advance per cell: 2 * phi

Figure 4.9.1: Lattice parameters of a pure FODO lattice, referred to the
90° degrees per cell (¢ = 45°) case. absolute values at 90° are given with
the symbol key.

where q is the inverse focal length of a regular arc “half-quad”, £ is the length of a half-cell,

and A6 is the bend angle per half-cell. Typical values have been obtained from
A6

/ . 1 1 .
t _ X _ t _ X _
ﬁxyp — Bgrvna Bgrvmn — 57 n yp 5 (nma + nmm) — ﬁ (493)
Substitution into Eq. (4.5.6) yields
2 ! 2 A2/
U (8) _n + (/31-77 + a’a:n) -~ (4.9.4)

Bu T sind ¢’
surprisingly independent of longitudinal coordinate s. Dependence of some lattice param-
eters as a function of phase advance per cell 2¢ are listed in Table 4.9.1. Included is a
numerical determination of H. It can be seen that Eq. (4.9.4) gives a reasonably good
estimate over the full range (considerably better than the approximation of Eq. (4.9.1) on

which it is based.
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With A#?/¢ being held fixed the emittance varies proportional to sin 3 ¢. This depen-
dence is shown in Table 4.9.1 and in Fig. 4.9.1. This shows, for example, that doubling
the phase advance per cell from 67.5° to 135° reduces the (ideal FODO) emittance by
a factor 4.6. The reduction factor for an actual accelerator will differ from this due to
irregular sections such as the high bend regions of CESR. For a fixed total machine tune
any deviation from regularity has a strong tendency to increase the emittance.

We obtain the natural emittance of a pure, isomagnetic FODO lattice by substitution

from Eq. (4.9.4) into Eq. (4.5.17), and approximating J, = 1,

g 02 1323w, 1323 AO* u, (4.9.5)
“ T8, 25, "E 2 sind¢ Ep’ o
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Chapter 5.
Statistical Methods

5.1. Brownian Motion, Stochastic and Fokker-Planck Equations,
etc.

The processes that determine beam distributions in electron storage rings can be related to
Brownian motion. This chapter contains a survey of this subject, following Chandrasekhar!
or Stratonovich? or Rice?® closely in places. The purpose is to develop tools for analysing
statistical probems. Sophisticated statistical methods are needed to analyse many of the
problems of importance for electron rings, such as beam lifetime, response to external
stimulation, and intrabeam scattering.

Small, but visible, macroparticles suspended in colloids are observed to jiggle around
randomly and this is now understood to be due to molecular collisions occuring at rapid
rate N collisions per second. The molecular force F(t) varies extremely rapidly, but one
supposes that the impulse I; = f F(t)dt delivered in a single collisions is random and
occurs at random time ¢;. The duration of each collision is short compared to 1/Nj,
the typical interval between collisions. Statistically, these impulses resemble the photons
emitted from a circulating electron. Through quantum mechanics, the radiated power
P(t) makes its presence felt through individual photons of energy u; = [ P(t) dt which are
radiated at random times ¢;. Their rate N is high, and their duration is short compared
to 1/N1. To enhance this analogy let us suppose the Brownian motion is one-dimensional.
Then, the only essential difference is that the wu; are necessarily positive, while the I; can
have either sign. Because the radiated energy is made up “on the average” by accelerating
structures in the ring, even this difference is largely superceded.

In statistical terminology the points ¢; are said to form a “system of random points”
and if, as we assume, the times £; are uncorrelated, as a “Poisson system”. Statistical
properties of such systems are discussed in the next section. When such a process acts
over a finite, but short, time interval At, the fluctuations it causes tend to be smoothed
out to some extent due to averaging. Here we consider distributions on time scales long

enough for such averaging to have occurred. In particular, it is assumed that enough
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